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3a. Acoustical Definitions!

LEO L. BERANEK

Bolt Beranek and Newman, Inc.

3a-1. General

Acceleration. The acceleration of a point is the time rate of change of the velocity
of the point.

Acoustic, acoustical. The qualifying adjectives acoustic and acoustical mean
containing, producing, arising from, actuated by, related to, or associated with sound.
Acoustic is used when the term being qualified designates something that has the
properties, dimensions, or physical characteristics associated with sound waves;
acoustical is used when the term being qualified does not designate explicitly something
which has such properties, dimensions, or physical characteristics.

EXAMPLES: Acoustic singularities manifested through acoustic impedance irregu-
larities make possible acoustical flaw-detection methods based on acoustic flaw
detection. Positive acoustical advantages can accrue from good acoustical utilization
of such acoustic signals, which represent an acoustical manifestation of electricity
transmitted acoustically by an acoustic medium. From the acoustical point of view,
acoustic loading is an excellent method of effecting the acoustical termination of an
acoustical system with an acoustic termination.

Acoustics. Acoustics is the seience of sound including its production, transmission,
and effects.

Anechoic Space or Chamber. An anechoic space or chamber is a bounded space in
which reflected waves are sufficiently weak as to be negligible in the region of interest;
more literally, echo-free space.

Antinodes (Loops). Antinodes are the points, lines, or surfaces in a standing-wave
system where some characteristic of the wave field has maximum amplitude.

Note: The appropriate modifier should be used with the word ‘‘antinode” to signify
the type that is intended (pressure antinode, velocity antinode, etc.).

Audio Frequency. An audio frequency is any frequency corresponding to a nor-
mally audible sound wave.

Note 1: Audio frequencies range roughly from 15 to 20,000 cycles per second.
Note 2: The word ‘“‘audio” may be used as a modifier to indicate a device or system
intended to operate at audio frequencies, e.g., ‘‘audio amplifier.”

Band Power Level. The band power level of a sound for a specified frequency band
is the acoustic power level for the acoustic power contained within the band. The
width of the band and the reference power must be specified. The unit is the decibel.

Band Pressure Level. The band pressure level of a sound for a specified frequency
band is the effective sound pressure level for the sound energy contained within the
band. The width of the band and the reference pressure must be specified. The unit
is the decibel.

1 From American Standard Z24.1-1951, American Standards Association.
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Beats. Beats are periodic variations that result from the superposition of waves
having different frequencies. ’

Compressional Wave. A compressional wave is a wave in an elastic medium which
causes an element of the medium to change its volume without undergoing rotation.

Note 1: Mathematically, a compressional wave is one whose velocity field has zero curl.
Note 2: A compressional plane wave is a longitudinal wave.

Continuous Spectrum. A continuous spectrum is the spectrum of a wave the com-
ponents of which are continuously distributed over a frequency region.

Decibel. The decibel is a dimensionless unit for expressing the ratio of two values
of power, the number of decibels being 10 times the logarithm to the base 10 of the
power ratio.

Note: With P; and P; designating two amounts of power and n the number of decibels
corresponding to their ratio,

n =10 10g1o %

When the conditions are such that scalar ratios of currents or of voltages (or analogous
quantities in other fields such as pressures, or particle velocities in sound) are the square
roots of the corresponding power ratios, the number of decibels by which the corresponding
powers differ is expressed by the following formulas:

I,
n' 20 logio T,

V1
n = 20 logio Vs

where I1/I2 and V1/V; are the given current and voltage ratios, respectively.

By extension, these relations between numbers of decibels and scalar ratios of currents or
voltages are sometimes applied where these ratios are not the square roots of the cor-
responding power ratios; to avoid confusion, such usage should be accompanied by a
specific statement of this application. ‘

Doppler Effect. The Doppler effect is the phenomenon evidenced by the change
in the observed frequency of a wave in a transmission system caused by a time rate of
change in the effective length of the path of travel between the source and the point of
observation. '

Echo. An echo is a wave which has been reflected or otherwise returned with suffi-
cient magnitude and delay to be perceived in some manner as a wave distinct from
that directly transmitted.

Effective Particle Velocity. The effective particle velocity at a point is the root
mean square of the instantaneous particle velocity (see Effective Sound Pressure for
details). The unit is the meter per second (in the cgs system the unit is the centimeter
per second).

Effective Sound Pressure (Root-mean-square Sound Pressure). The effective sound
pressure at a point is the root-mean-square value of the instantaneous sound pressures,
over a time interval at the point under consideration. In the case of periodic sound |
pressures, the interval must be an integral number of periods or an interval which is
long compared with a period. In the case of nonperiodic sound pressures, the interval
should be long enough to make the value obtained essentially independent of small
changes in the length of the interval.

Note: The term ‘‘effective sound pressure’’ is frequently shortened to ‘‘sound pressure.”

Electric Power Level, or Sound Intensity Level. The electric power level, or the
acoustic intensity level, is a quantity expressing the ratio of two electric powers or of
two sound intensities in logarithmic form. The unit is the decibel. Definitions are
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Electric power level = 10 logio —%——1 db
2

Acoustic intensity level = 10 loglo—ﬁ—l db
2
where W, and W are two electric powers and I, and I» are two sound intensities.
Extending this thought further, we see that

R, E,?
E R
= 20 logw -E_: + 10 logm R‘i db

Electric power level = 10 logio

where E; is the voltage across the resistance R, in which a power W is being dissipated
and E; is the voltage across the resistance R, in which a power W3 is being dissipated.
Similarly,

Acoustic intensity level = 20 logo %1 + 10 loge g” db
2 sl

where p; is the pressure at a point where the specific acoustic resistance (i.e., the real
part of the specific acoustic impedance) is B, and p2is the pressure at a point where the
specific acoustic resistance is R,,. We note that 10 logio (W1/W3) = 20 logio (E1/E?)
only if R, = R: and that 10 logio (I1/I5) = 20 logie (p1/p2) only if Ry2 = Rs.

Levels involving voltage and pressure alone are sometimes spoken of with no regard
to the equalities of the electric resistances or specific acoustic resistances. This prac-
tice leads to serious confusion. It is emphasized that the manner in which the terms
are used always should be clearly stated by the user in order to avoid confusion.

Flutter Echo. A flutter echo is a rapid succession of reflected pulses resulting from
a single initial pulse.

Free Field. A free field is a field (wave or potential) in a homogeneous isotropic
medium free from boundaries. In practice it is a field in which the effects of the
boundaries are negligible over the region of interest.

Note: The actual pressure impinging on an object (e.g., electroacoustic transducer)
placed in an otherwise free sound field will differ from the pressure which would exist at
that point with the object removed, unless the acoustic impedance of the object matches
the acoustic impedance of the medium.

Infrasonic Frequency (Subsonic Frequency). An infrasonic frequency is a fre-
quency lying below the audio-frequency range.

Note: The word ‘‘infrasonic’’ may be used as a modifier to indicate a device or system
intended to operate at infrasonic frequencies.

Instantaneous Particle Velocity (Particle Velocity). The instantaneous particle
velocity at a point is the velocity, due to the sound wave only, of a given infinitesimal
part of the medium at a given instant. It is measured over and above any motion of
the medium as a whole. The unit is the meter per second (in the cgs system the unit
is the centimeter per second).

Instantaneous Sound Pressure. The instantaneous sound pressure at a point is the
total instantaneous pressure at that point minus the static pressure at that point.
The commonly used unit is the microbar.

Intensity Level. The intensity level of a sound, in decibels, is 10 times the logarithm
to the base 10 of the ratio of the intensity of this sound to a reference intensity. That
is,

Ly =10 lOgm II
ref
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In the United States the reference intensity is often taken to be 10~ watt /em?2(10-12
watt/m?). This reference at standard atmospheric conditions in a plane or spherical
progressive wave was originally selected as corresponding approximately to the
reference pressure (0.0002 microbar).

Line Specirum. A line spectrum is the spectrum of a wave the components of which
are confined to a number of discrete frequencies.

Longitudinal Wave. A longitudinal wave is a wave in which the direction of dis-
placement at each point of the medium is normal to the wave front.

Microbar (ub). A microbar is a unit of pressure commonly used in acoustics. One
microbar is equal to 0.1 newton per square meter or 1 dyne per square centimeter.

Neper. The neper is a unit used to express the scalar ratio of two currents or two
voltages, the number of nepers being the natural logarithm of such a ratio.

Note 1: With I and I» designating the scalar value of two currents, and n the number of
nepers denoting their scalar ratio, then

n = lo L

Tk T,

When the conditions are such that the power ratio is the square of the corresponding cur-
rent or voltage ratio, the number of nepers by which the corresponding voltages or currents
differ may be expressed by the following formula:

where P1/P: is the given power ratio.

By extension, this relation between number of nepers and power ratio is sometimes applied
where this ratio is not the square of the corresponding current or voltage ratio; to avoid
confusion, such usage should be accompanied by a specific statement of this application.

Note 2: One neper is equal to 8.686 db.

Note 3: The neper is used in mechanices and acoustics by extending the above definition
to include all scalar ratios of like quantities which are analogous to current or voltage.

Nodes. Nodes are the points, lines, or surfaces in a standing-wave system where
some characteristic of the wave field has essentially zero amplitude.

Note: The appropriate modifier should be used with the word ‘‘ node” to signify the
type that is intended (pressure node, velocity node, ete.).

Noise. Noise is any undesired sound. By extension, noise is any unwanted dis-
turbance within a useful frequency band, such as undesired electric waves in any
transmission channel or device.

Plane Wave. A plane wave is a wave in which the wave fronts are everywhere
parallel planes normal to the direction of propagation.

Power Spectrum Level. The power spectrum level of a sound at a specified frequency
is the power level for the acoustic power contained in a band one cycle per second wide,
centered at this specified frequency. The reference power must be specified. The
unit is the decibel (see also the discussion under Pressure Spectrum Level).

Pressure Spectrum Level. The pressure spectrum level of a sound at specified fre-
quency is the effective sound pressure level for the sound energy contained within a
band one cycle per second wide, centered at this specified frequency. The reference
pressure must be explicitly stated. The unit is the decibel.

Note: The concept of pressure spectrum level ordinarily has significance only for sound
having a continuous distribution of energy within the frequency range under consideration.
The level of a uniform band of noise with a continuous spectrum exceeds the spectrum
level by

Crn = 10 logio (fi — f2) db

where f, and f. are the upper and lower frequencies of the band, respectively. The level
of a uniform noise with a continuous spectrum in a band of width Jo — fa cps is therefore
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related to the spectrum level by the formula
Ln = Cn + Sn

where L, = sound préssure level in decibels of the noise in the band of width fi — fa; for
C, see above, S, = spectrum level of the noise, and n = designation number for the band
being considered.

Rate of Decay. The rate of decay is the time rate at which the sound pressure level
(or velocity level, or sound-energy density level) is decreasing at a given point and at a
given time. The practical unit is the decibel per second. )

Reverberation. Reverberation is the persistence of sound at a given point after
direct reception from the source has stopped.

Note; This may be due (1) (as in the case of rooms) to repeated reflections from a small
number of boundaries or to the free decay of the normal modes of vibration that were
excited by the sound source, (2) (as in the case of underwater sound in the ocean) to scatter-
ing from a large number of inhomogeneities in the medium or reflection from bounding
surfaces.

Shear Wave (Rotational Wave). A shear wave is a wave in an elastic medium
which causes an element of the medium to change its shape without a change of
volume.

Note 1: Mathematically, a shear wave is one whose velocity field has zero divergence.
Note 2: A shear plane wave in an isotropic medium is a transverse wave.

Sound-Energy Density. The sound-energy density is the sound energy in a given
infinitesimal part of the gas divided by the volume of that part of the gas. The unit
is the watt-second per cubic meter. (In the cgs system the unit is the erg per cubic
Gentimeter). In many acoustic environments such as in a plane wave the sound-
energy density at a point is

where v is the ratio of specific heats for a gas and is equal to 1.4 for air and other
diatomic gases. The quantity v is dimensionless. P, is the barometric pressure.

Sound Field. A sound field is a region containing sound waves.

Sound Intensity (I). The sound intensity measured in a specified direction at a
point is the average rate at which sound energy is transmitted through a unit area per-
pendicular to the specified direction at the point considered. The unit is the watt per
square meter. (In the cgs system the unit is the erg per second per square centimeter.)
In a plane or spherical free-progressive sound wave the intensity in the direction of
propagation is

_r

I= -~ watts/m? or erg-sec™!/cm?
Po

Note: In the acoustical literature the intensity has often been expressed in the units
of watts per square centimeter, which is equal to 1077 times the number of ergs per second
per square centimeter. -

Sound Intensity Level. See Electric Power Level.

Sound Level. The sound level at a point in a sound field is the reading in decibels
of a sound-level meter constructed and operated in accordance with the latest edition
of American Standard Sound Level Meters for the Measurement of Noise and Other
Sounds.! ‘

The meter reading (in decibels) corresponds to a value of the sound pressure

1 American Standard Sound Level Meters for the Measurement of Noise and Other
Sounds,  Z24.3-1944, American Standards A;;sociation, Inc., New York. This standard
is in process of revision.
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integrated over the audible frequency range with a specified frequency weighting and
integration time.

Sound Power Level. The acoustic power level of a sound source in decibels is 10
times the logarithm to the base 10 of the ratio of the acoustic power radiated by the
source to a reference acoustic power. That is,

LW = 10 10g10 db

w
Wref
Often, Wit is 10713 watt. This means that a source radiating 1 acoustic watt has a
power level of 130 db.

Sound Pressure Level. The pressure level of a sound, in decibels, is 20 times the
logarithm to the base 10 of the ratio of the measured effective sound pressure of this
sound to a reference effective sound pressure. That is,

L, = db

In the United States p.e is either (1) pre¢ = 0.0002 microbar (2 X 10~% newton/m?2) or
(2) pres = 1 microbar (0.1 newton/m?). Reference pressure (1) has been in general
use for measurements dealing with hearing and for sound-level and noise measurements
in air and liquids. Reference pressure (2) has gained widespread use for calibration
of transducers and some types of sound-level measurements in liquids. The two
reference levels are almost exactly 74 db apart. The reference pressure must always
be stated explicitly.

Spectrum. The spectrum of a wave is the distribution in frequency of the magni-
tudes (and sometimes phases) of the components of the wave. Spectrum also is used
to signify a continuous range of frequencies, usually wide in extent, within which waves
have some specified common characteristic, e.g., audio-frequency spectrum, radio-
frequency spectrum, ete.

Spherical Wave. A spherical wave is a wave in which the wave fronts are con-
centric spheres.

Standing Waves. Standing waves are periodic waves having a fixed distribution in
space which is the result of interference of progressive waves of the same frequency and
kind. Such waves are characterized by the existence of nodes or partial nodes and
antinodes that are fixed in space.

Static Pressure (Po). The static pressure at a point in the medium is the pressure
that would exist at that point with no sound waves present. At normal barometric
pressure, P, equals approximately 10° newtons/m? (10 dynes/cm?). This corre-
sponds to a barometer reading of 0.751 m (29.6 in.) Hg(mercury) when the tempera-
ture of the mercury is 0°C. Standard atmospheric pressure is usually taken to be
0.760 m Hg at 0°C.

Stationary Waves. Stationary waves are standing waves in which the energy flux
is zero at all points.

Note: Stationary waves can only be approximated in practice.

Strength of a Simple Sound Source. The strength of a simple sound source is the
rms magnitude of the total air flow at the surface of a simple source in cubic meters
per second (or cubic centimeters per second), where a simple source is taken to be a
spherical source whose radius is small compared with one-sixth wavelength.

Ultrasonic Frequency (Supersonic Frequency). An ultrasonic frequency is a fre-
quency lying above the audio-frequency range. The term is commonly applied to
elastic waves propagated in gases, liquids, or solids.

Note: The word ‘‘ultrasonic” may be used as a modifier to indicate a device or system
intended to operate at ultrasonic frequencies.
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v

Velocity. The velocity of a point is the time rate of change of a position vector of
that point with respect to an inertial frame.

Note: In most cases the approximation is made that axes fixed to the earth constitute
an inertial frame.

Volume Velocity. The volume velocity, due to a sound wave only, is the rate of flow
of the medium perpendicularly through a specified area 8. That is, U = S, where
u is the particle velocity and U is the volume velocity. The unit is the cubic meter
per second. (In the cgs system the unit is the cubic centimeter per second.)

Wave. A wave is a disturbance which is propagated in a medium in such a manner
that at any point in the medium the displacement is a function of the time, while at
any instant the displacement at the point is a function of the position of the point.

Any physical quantity which has the same relationship to some independent
variable (usually time) that a propagated disturbance has, at a particular instant, with
respect to space, may be called a wave.

Note: In this definition, displacement is used as a general term, indicating not only
mechanical displacement, but also electric displacement, etc.

Wavefront. (1) The wavefront of a progressive wave in space is a continuous
surface which is a locus of points having the same phase at a given instant. (2) The
wavefront of a progressive surface wave is a continuous line which is a locus of points
having the same phase at a given instant.

Wave Interference. Wave interference is the phenomenon which results when waves
of the same or nearly the same frequency are superposed and is characterized by a
spatial or temporal distribution of amplitude of some specified characteristic differing
from that of the individual superposed waves.

3a-2. Sound Transmission and Propagation

Acoustic Attenuation Constant (Attenuation Constant). The acoustic attenuation
constant is the real part of the acoustic propagation constant. The commonly used
unit is the neper per section or per unit distance.

Note: In the case of a symmetrical structure, the imaginary parts of both the transfer
constant and the acoustic propagation constant are identical, and hence either one may
be called simply the attenuation constant.

Acoustic Compliance. The acoustic compliance of an enclosed volume of gas is
equal to the magnitude of the ratio of the volume displacement of a piston forming one
side of the volume to the pressure causing the displacement (units cm®/dyne or
m?®/newton).

Acoustic Impedance (American Standard Acoustic Impedance). The acoustic
impedance at a given surface is defined as the complex ratio? of effective sound pressure
averaged over the surface to effective volume velocity through it. The surface may
be either a hypothetical surface in an acoustic medium or the moving surface of a
mechanical device. The unit is newton-sec/m?, or the mks acoustic ohm.2 (In the
cgs system the unit is dyne-sec/cm5, or acoustic ohm.)

Zg = P newton-sec/m? (mks acoustic ohms)

Acoustic Mass (Inertance). The acoustic mass is the quantity which, when multi-
plied by 2r times the frequency, gives the acoustic reactance associated with the
kinetic energy of the medium (units gm/cm* or kg/m*).

1 “Complex ratio’” has the same meaning as the complex ratio of voltage and current

in electric-circuit theory.
2 This notation is taken from Table 12.1 of American Standard Z24.1-1951.
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Acoustic Ohm. The acoustic ohm is the magnitude of an acoustic resistance,
reactance, or impedance for which a sound pressure of one microbar produces a volume
velocity of one cubic centimeter per second (dyne-sec/cm?®). When expressed in
newton-sec/m?, it is called the mks acoustic ohm.

Acoustic Phase Constant. The acoustic phase constant is the imaginary part of the
acoustic propagation constant. The commonly used unit is the radian per section
or per unit distance.

Note: In the case of a symmetrical structure, the imaginary parts of both the transfer
constant and the acoustic propagation constant are identical, and have been called the
“wavelength constant.”

Acoustic Propagation Constant. The acoustic propagation constant of a uniform
system or of a section of a system of recurrent structures is the natural logarithm of
the complex ratio of the steady-state particle velocities, volume velocities, or pressures
at two points separated by unit distance in the uniform system (assumed to be of
infinite length), or at two successive corresponding points in the system of recurrent
structures (assumed to be of infinite length). The ratio is determined by dividing the
value at the point nearer the transmitting end by the corresponding value at the more
remote point.

Acoustic Resistance. Acoustic resistance is the real component of the acoustic
impedance. The cgs unit is the acoustic ohm. The mks unit is the specific acoustic
ohm.

Acoustic, Specific Acoustic, and Mechanical Reactance. The acoustic reactance,
the specific acoustic reactance, and the mechanical reactance are, respectively,
the imaginary parts of the acoustic impedance, the specific acoustic impedance, and the
mechanical impedance. The units are the same, respectively, as for the real, i.e., the
resistive parts.

Characteristic Impedance. The characteristic impedance is the ratio of the effective
sound pressure at a given point to the effective particle velocity at that point in a free,
plane, progressive sound wave. It is equal to the product of the density of the medium
times the speed of sound in the medium. It is analogous to the characteristic imped-
ance of an infinitely long, dissipationless transmission line. The unit is the mks rayl,
or newton-sec/m3. (In the cgs system, the unit is the rayl, or dyne-sec/cms3.)

Insertion Loss. 'The insertion loss resulting from the insertion of a transducer in a
transmission system is the ratio of the power delivered to that part of the system
which will follow the transducer, before insertion of the transducer, to the power
delivered to that same part of the system after insertion of the transducer.

Note 1: If the input power, the output power, or both consist of more than one com-
ponent, the particular components used must be specified.
Note 2: This ratio is usually expressed in decibels.

Mechanical Compliance. The mechanical compliance of a springlike device is equal
to the magnitude of the ratio of the displacement of the device to the force that pro-
duced the displacement (units cm/dyne or m/newton).

Mechanical I'mpedance. The mechanical impedance is the complex ratio of the
effective force acting on a specified area of an acoustic medium or mechanical device
to the resulting effective linear velocity through or of that area, respectively. The
unit is the newton-sec/m, or the mks mechanical ohm. (In the egs system the unit
is the dyne-sec/cm, or the mechanical ohm.) That is, Zy = f/u newton-sec/m
(mks mechanical ohms).

Mechanical Ohm. The mechanical ohm is the magnitude of a mechanical resistance,
reactance, or impedance for which a force of one dyne produces a linear velocity of one
centimeter per second (dyne-sec/cm). When expressed in newton-sec/m, it is called
the mks mechanical ohm. '

J e e T R R b
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Mechanical Resistance. Mechanical resistance is the real part of the mechanical
impedance. The cgs unit is the mechanical ohm. The mks unit is the mks mechani-
cal ohm.

Natural Frequency. A natural frequency of a body or system is a frequency of free
oscillation.

Normal Mode of Vibration. A normal mode of vibration is a characteristic distribu-
tion of vibration amplitudes among the parts of the system, each part of which is
vibrating freely at the same frequency. Complex free vibrations are combinations
of these simple vibration forms.

Rayl.! The rayl is the magnitude of a specific acoustic resistance, reactance, or
impedance for which a sound pressure of one microbar produces a linear velocity of
one centimeter per second (dyne-sec/cm?). When expressed in newton-sec/m? it is
called the mks rayl.

Resonance Frequency. A resonance frequency is a frequency at which resonance
exists. The commonly used unit is the cycle per second.

Note: In cases where there is a possibility of confusion, it is necessary to specify the
type of resonance frequency, e.g., displacement resonance frequency or velocity resonance
frequency.

Specific Acoustic Compliance. The specific acoustic compliance of a springlike
device or an enclosed volume of gas is equal to the magnitude of the ratio of the dis-
placement of the device or of a piston forming one side of the volume to the pressure
that produced the displacement (units cm?/dyne or m3/newton).

Specific Acoustic Impedance. The specific acoustic impedance is the complex ratio
of the effective sound pressure at a point of an acoustic medium or mechanical device
to the effective particle velocity at that point. The unit is newton-sec/m?, or the mks
rayl. (In the cgs system the unit is dyne-sec/cm3, or the rayl.) That is, Z, = p/u
newton-sec/m3 (mks rayls).

Specific Acoustic Mass. The specific acoustic mass is the quantity which when
multiplied by 2= times the frequency gives the specific acoustic reactance associated
with the kinetic energy of the medium (units gm/cm? or kg/m?).

Transmission Loss. In communication, transmission loss (frequently abbreviated
“Joss’’) is a general term used to denote a decrease in power in transmission from one
point to another. Transmission loss is usually expressed in decibels.

8a-3. Transmission Systems and Components

Acoustical Reciprocity Theorem. In an acoustic system comprising a fluid medium
having bounding surfaces Si, Sz, Ss, . . . , and subject to no impressed body forces,
if two distributions of normal velocities v, and v, of the bounding surfaces produce
pressure fields p’ and p’’, respectively, throughout the region, then the surface integral
of (p''v., — p'v.)) over all the bounding surfaces Si, Sz, Ss, . . . , vanishes.

Note: If the region contains only one simple source, the theorem reduces to the form
ascribed to Helmholtz, viz., in a region as described, a simple source at A produces the
same sound pressure at another point B as would have been produced at A had the source
been located at B.

Directivity Factor. (1) The directivity factor on a particular axis of a sound source
is the ratio of the sound intensity at a point in the far field on the designated axis to the
sound intensity that would be produced at that same point by a spherical source
radiating the same total acoustic power. The frequency or the frequency band must
be stated. (2) The directivity factor on a particular axis of a sound receptor (trans-
ducer, ear trumpet, etc.) is the ratio of the energy per second produced in the receptor

1 Named in honor of Lord Rayleigh.
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in response to a plane sound wave arriving along the designated axis to the energy per
second that would be produced if plane sound waves having the same mean-square
sound pressure were arriving simultaneously from all directions with random phase.
The frequency or frequency band must be specified.

Directivity Index (Directional Gain). The directivity index of a transducer is an
expression of the directivity factor in decibels, viz., 10 times the logarithm to the base
10 of the directivity factor. .

Effective Acoustic Center. The effective acoustic center of an acoustic generator is
the point from which the spherically divergent sound waves, observable at remote
points, appear to diverge.

Effective Bandwidth. The effective bandwidth may be expressed mathematically
as follows:

Effective bandwidth — ﬁ) *qadf

where f is the frequency in cycles per second and @ is the ratio of the power trans-
mission at the frequency f, to the transmission at the frequency of maximum
transmission.

Electroacoustical Reciprocity Theorem. For an electroacoustic transducer satisfying
the reciprocity principle, the quotient of the magnitude of the ratio of the open-circuit
voltage at the output terminals (or the short-circuit output current) of the transducer,
when used as a sound receiver, to the free-field sound pressure referred to an arbitrarily
selected reference point on or near the transducer, divided by the magnitude of the
ratio of the sound pressure apparent at a distance d from the reference point to the
current flowing at the transducer input terminals (or the voltage applied at the input
terminals), when used as a sound emitter, is a constant, called the “reciprocity con-
stant,” independent of the type or constructional details of the transducer.

Note: The reciprocity constant is given by
Mo M, _2d X 1077
So S, of
where Mo = free-field voltage response as a sound receiver, in open-circuit volts per
microbar, referred to the arbitrary reference point on or near the transducer
M, = free-field current response in short-circuit amperes per microbar, referred to
the arbitrary reference point on or near the transducer
8o = sound pressure produced at a distance d cm from the arbitrary reference
point in microbars per ampere of input current
S; = sound pressure produced at a distance d ¢cm from the arbitrary reference point
in microbars per volt applied at the input terminals
f = frequency in cycles per second
p = density of the medium in grams per cubic centimeter
d = distance in centimeters from the arbitrary reference point on or near the
transducer to the point at which the sound pressure established by the trans-
ducer when emitting is evaluated

2d

Principal Azis. The principal axis of a transducer used for sound emission or
reception is a reference direction for angular coordinates used in describing the direc-
tional characteristics of the transducer. It is usually an axis of structural symmetry,
or the direction of maximum response; but if these do not coincide, the reference
direction must be described explicitly.

Relative Response. The relative response is the ratio, usually expressed in decibels,
of the response under some particular conditions to the response under reference
conditions, which should be stated explicitly.

Response. The response of a device or system is a quantitative expression of the
output as a function of the input under conditions which must be explicitly stated.
The response characteristic, often presented graphically, gives the response as a func-
tion of some independent variable such as frequency or direction.
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3a-4. Ultrasonics

Supersonics. Supersonics is the general subject covering phenomena associated
with speed higher than the speed of sound (as in case of aircraft and projectiles
traveling faster than sound).

Note: This term has been used in acoustics synonymously with ‘‘ultrasonics.”” Such
usage is now deprecated.

Ultrasonics. Ultrasonics is the general subject of sound in the frequency range
above about 15 kilocycles per second.

Ultrasonic Detector. An ultrasonic detector is a device for the detection and
measurement of ultrasonic waves.

Note: Such devices may be mechanical, electrical, thermal, or optical in nature.

Ultrasonic Generator. An ultrasonic generator is a device for the production of
sound waves of ultrasonic frequency.

3a-6. Hearing and Speech

Articulation (Per Cent Articulation) and Intelligibility (Per Cent Intelligibility)'.
Per cent articulation or per cent intelligibility of a communication system is the per-
centage of the speech units spoken by a talker or talkers that is understood correctly
by a listener or listeners.

The word “articulation’ is customarily used when the contextual relations among
the units of the speech material are thought to play an unimportant role; the word
“intelligibility ”’ is customarily used when the context is thought to play an important
role in determining the listener’s perception.

Note 1: It is important to specify the type of speech material and the units into which
it is analyzed for the purpose of computing the percentage. The units may be fundamental
speech sounds, syllables, words, sentences, etc.

Note 2: The per cent articulation or per cent intelligibility is a property of the entire
communication system: talker, transmission equipment or medium, and listener. Even
when attention is focused upon one component of the system (e.g., a talker, a radio receiver),
the other components of the system should be specified.

Audiogram (Threshold Audiogram). An audiogram is a graph showing hearing
loss, per cent hearing loss, or per cent hearing as a function of frequency.

Aural Harmonic. An aural harmonic is a harmonic generated in the auditory
mechanism.

Average Speech Power. The average speech power for any given time interval is the
average value of the instantaneous speech power over that interval.

Difference Limen (Differential Threshold) (Just-noticeable Difference). A differ-
ence limen is the increment in a stimulus which is just noticed in a specified fraction
of the trials. The relative difference limen is the ratio of the difference limen to the
absolute magnitude of the stimulus to which it is related.

Discrete Word (or Discrete Sentence) Intelligibility. Discrete word intelligibility is -
the per cent intelligibility obtained when the speech units considered are words (or
sentences). k

Electrophonic Effect. TElectrophonic effect is the sensation of hearing produced
when an alternating current of suitable frequency and magnitude from an external
source is passed through an animal.

Hearing Loss (Deafness). The hearing loss of an ear at a specified frequency is the
ratio, expressed in decibels, of the threshold of audibility for that ear to the normal

threshold.!

1 See also American Standard Specification for Audiometers for General Diagnostic
Purposes, Z24.5-1951, or the latest revision thereof approved by the ASA.
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Hearing Loss for Speech. Hearing loss for speech is the difference in decibels
between the speech levels at which the average normal ear and the defective ear,
respectively, reach the same intelligibility, often arbitrarily set at 50 per cent.

Instantaneous Speech Power. The instantaneous speech power is the rate at which
sound energy is being radiated by a speech source at any given instant.

Loudness. Loudness is the intensive attribute of an auditory sensation, in terms
of which sounds may be ordered on a scale extending from soft to loud.

Note: Loudness depends primarily upon the sound pressure of the stimulus, but it also
depends upon the frequency and waveform of the stimulus.

Loudness Contours. Loudness contours are curves which show the related values
of sound pressure level and frequency required to produce a given loudness sensation
for the typical listener.

Loudness Level. The loudness level, in phons, of a sound is numerically equal to the
sound pressure level in decibels, relative to 0.0002 pb, of a simple tone of frequency
1,000 cps which is judged by the listeners to be equivalent in loudness.

Masking. Masking is the amount by which the threshold of audibility of a sound
is raised by the presence of another (masking) sound. The unit customarily used is
the decibel.

Masking Audiogram. A masking audiogram is a graphical presentation of the
masking due to a stated noise. This is plotted, in decibels, as a function of the fre-
quency of the masked tone.

Mel. The mel is a unit of pitch. By definition, a simple tone of frequency, 1,000
cps, 40 db above a listener’s threshold, produces a pitch of 1,000 mels. The pitch of
any sound that is judged by the listener to be n times that of a 1-mel tone is n mels.

Peak Speech Power. The peak speech power is the maximum value of the instan-
taneous speech power within the time interval considered.

Per Cent Hearing. The per cent hearing at any given frequency is 100 minus the
per cent hearing loss at that frequency.

Per Cent Hearing Loss (Per Cent Deafness). The per cent hearing loss at a given
frequency is 100 times the ratio of the hearing loss in decibels to the number of decibels
between the normal threshold levels of audibility and feeling.

Note 1: A weighted mean of the per cent hearing losses at specified frequencies is often
used as a single measure of the loss of hearing.

Note 2: The American Medical Association has defined percentage loss of hearing for
medicolegal use.!

Phon. The phon is the unit of loudness level. (See definition for Loudness Level.)
Pitch. Pitch is that attribute of auditory sensation in terms of which sounds may
be ordered on a scale extending from low to high, such as a musical scale.

Note 1: Pitch depends primarily upon the frequency of the sound stimulus, but it also
depends upon the sound pressure and waveform of the stimulus.

Note 2: The pitch of a sound may be described by the frequency of that simple tone,
having a specified sound pressure or loudness level, which seems to the average normal ear
to produce the same pitch.

Sone. The sone is a unit of loudness. By definition, a simple tone of frequency
1,000 cps, 40 db above a listener’s threshold, produces a loudness of 1 sone. The loud-
ness of any sound that is judged by the listener to be n times that of the 1-sone tone is
n sones.

Syllable (or Sound, or Vowel, or Consonant) Articulation.? Syllable (or sound or

1See J. Am. Med. Assoc. 133, 396, 397 (Feb. 8, 1947).
2 See notes above under Articulation and Intelligibility.
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vowel or consonant) articulation is the per cent articulation obtained when the speech
units considered are syllables (or fundamental sounds, or vowels, or consonants).

Threshold of Audibility (Threshold of Detectability). The threshold of audibility
for a specified signal is the minimum effective sound pressure of the signal that is
capable of evoking an auditory sensation in a specified fraction of the trials. The
characteristics of the signal, the manner in which it is presented to the listener, and the
point at which the sound pressure is measured must be specified. The threshold is
usually expressed in decibels relative to 0.0002 ub.

Threshold of Feeling (or Discomfort, Tickle, or Pain). The threshold of feeling (or
discomfort, tickle, or pain) for a specified signal is the minimum effective sound pres-
sure of that signal which, in a specified fraction of the trials, will stimulate the ear to a
pbint such that there is the sensation of feeling (or discomfort, tickle, or pain). This
threshold is customarily expressed in decibels relative to 0.0002 ub.

3a-6. Music

Cent. A cent is the interval between two sounds whose basic frequency ratio is the
twelve-hundredth root of 2.

Note: The interval, in cents, between any two frequencies is 1,200 times the logarithm
to the base 2 of the frequency ratio. Thus, 1,200 cents = 12 equally tempered semitones =
1 octave.

Complex Tone. (1) A complex tone is a sound wave produced by the combination
of simple sinusoidal components of different frequencies. (2) A complex tone is a
sound sensation characterized by more than one pitch.

Equally Tempered Scale. An equally tempered scale is a series of notes selected
from a division of the octave (usually into 12 equal intervals, see Table 3a-1).

TaBLE 3a-1. EQuaLLy TEMPERED INTERVALS

Name of interval Frequfency Cents
ratio

Unison............. i 1:1 0
Minor second or semitone............ 1.059463:1 100
Major second or whole tone. . ........ 1.122462:1 200
Minor third. .. ...................... 1.189207:1 300
Major third. ... ........ ... ... .... 1.259921:1 400
Perfect fourth....................... 1.334840:1 500
Augmented fourth; diminished fifth...| 1.414214:1 600
Perfect fifth. ... . ... ... ........... 1.498307:1 700
Minorsixth. ........................ { 1.587401:1 800
Majorsixth......................... 1.681793:1 900
Minor seventh. ..................... 1.781797:1 1,000
Major seventh................ Lo 1.887749:1 1,100
Octave............coiiiiiiiinn. 2:1 1,200

Fundamental Tone. (1) The funamental tone is the component in a periodic wave
corresponding to the fundamental frequency. (2) The fundamental tone is the com-
ponent tone of lowest pitch in a complex tone.

Harmonic. A harmonic is a partial whose frequency is an integral multiple of the
fundamental frequency.

Note: The above definition is in musical terms (for the definition in physical terms, see
Sound).
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Harmonic Series of Sounds. A harmonic series of sounds is one in which each basic
frequency in the series is an integral multiple of a fundamental frequency.

Interval. The interval between two sounds is their spacing in pitch or frequency,
whichever is indicated by the context. The frequency interval is expressed by the
ratio of the frequencies or by a logarithm of this ratio.

Octave. An octave is the interval between two sounds having a basic frequency
ratio of 2. By extension, the octave is the interval between any two frequencies
having the ratio 2:1.

Note: The interval, in octaves, between any two frequencies is the logarithm to the
base 2 (or 3.322 times the logarithm to the base 10) of the frequency ratio.

Overtone. (1) An overtone is a physical component of a complex sound having a
frequency higher than that of the basie frequency (see Partial below). (2) An over-
tone is a component of a complex tone having a pitch higher than that of the funda-
mental pitch.

Note: The term ‘overtone’ has frequently been used in place of ‘“‘harmonic,” the nth
harmonic being called the (n-1)st overtone. There is, however, ambiguity sometimes
in the numbering of components of a complex sound when the word overtone is employed.
Moreover, the word ‘‘tone’’ has many different meanings, so that it is preferable to employ
terms which do not involve ‘‘tone’’ wherever possible.

Partial. A partial is a physical component of a sound sensation which may be
distinguished as a simple tone that cannot be further analyzed by the ear and which
contributes to the character of the complex sound.

Note 1: The frequency of a partial may be either higher or lower than the basic fre-
quency and may or may not be an integral multiple or submultiple of the basic frequency
(for definition of basic frequency see Basic Frequency). If the frequency is not a multiple
or submultiple, the partial is inharmonie.

Note 2: When a system is maintained in steady forced vibration at a basic frequency
equal to one of the frequencies of the normal modes of vibration of the system, the partials
in the resulting complex tone are not necessarily identical in frequency with those of the
other normal modes of vibration. .

Scale. A musical scale is a series of notes (symbols, sensations, or stimuli) arranged
from low to high by a specified scheme of intervals, suitable for musical purposes.

Semitone (Half Step). A semitone is the interval between two sounds whose basic
frequency ratio is approximately equal to the twelfth root of 2.

Note: The interval, in equally tempered semitones, between any two frequencies, is
12 times the logarithm to the base 2 (or 39.86 times the logarithm to the base 10) of the
frequency ratio.

Simple Tone (Pure Tone). (1) A simple tone is a sound wave, the instantaneous
sound pressure of which is a simple sinusoidal function of the time. (2) A simple
tone is a sound sensation characterized by its singleness of pitch.

Standard Pitch. The standard pitch is based on the tone A of 440 cps (see Table
3a-2). ‘

Note 1: With this standard the frequency of middle C is 261.626 cps (see Table 3a-2).
Note 2: Musical instruments are to be capable of complying with this standard when
played where the ambient temperature is 22°C (72°F).

Tone. (1) A tone is a sound wave capable of exciting an auditory sensation having
pitch. (2) A tone is a sound sensation having pitch.

Whole Tone (Whole Step). A whole tone is the interval between two sounds whose
basic frequency ratio is approximately equal to the sixth root of 2.
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3a-7. Architectural Acoustics

Anechoic Chamber. An anechoic chamber is a bounded space in which reflected
waves are sufficiently weak as to be negligible in the region of interest; more literally,
echo-free space.

Attenuation Constant. See Acoustic Attenuation Constant in Sec. 3a-2.

Dead Room. A dead room is a room that subjectively sounds nonreverberant. It
is commonly a room having an unusually large amount of sound absorption.

Decay Constant. The decay constant is the exponential power by which sound
decays after the source is stopped (units sec™?).

Note: If po is the effective sound pressure at ¢ = 0, p(t) is the effective sound pressure
at time £, and the two are related by

p(t) = poe™
then k is the decay constant.
Direct Sound Wave. A direct sound wave in an enclosure is a wave emitted from a
source prior to the time it has undergone its first reflection from a boundary of the
enclosure. -

Note: Frequently, a sound wave is said to be direct if it contains reflections that have
occurred from surfaces within about 0.05 sec after the sound was first emitted.

Live Room. A live room is a room that subjectively sounds reverberant. It is
commonly a room having an unusually small amount of sound absorption.

Mean Free Path. The mean free path for sound waves in an enclosure is the average
distance sound travels between successive reflections in the enclosure.

Noise Reduction. In architectural acoustics, noise reduction generally is the
difference between the effective sound pressure levels (in decibels) between the noise
fields on opposite sides of a noise-reducing panel, with all sources of sound being on one
side of the panel.

Reverberant Sound. Reverberant sound is that part of the sound in an enclosure
that has undergone one or more reflections from the boundaries of the enclosure.

Reverberation Chamber. A reverberation chamber is an enclosure in which all the
surfaces have been made as sound-reflective as possible. Reverberation chambers are
used for certain acoustical measurements. ’

Room Constant. 'The room constant is given by the formula

Sa

1l —a

R=

where & is the average sound-absorption coefficient and S is the total area of the
boundaries of the room.

Sabin (Square Foot Unit of Absorption). A sabin is a measure of the sound
absorption of a surface. It is the equivalent of 1 square foot of a perfectly absorptive
surface.

Sound (Energy) Absorption Coeffictent. (1) At a particular angle of wave incident,
the sound-absorption coefficient is the ratio of the sound energy absorbed by the sur-
face to the energy in the plane wave incident upon it. (2) For random wave inci-
dence, the sound-absorption coefficient is the ratio of the sound energy absorbed by
the surface to the energy incident upon it from a sound field in which sound waves are
striking the surface equally from all angles of incidence. (3) The average sound-
absorption coefficient for a room is the weighted average of the random-incidence
absorption coefficients computed from the formula

_ =Sla1+sza2+ssa3+ c o+ Span
S14+8S+8+ - - +8.
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where Si, Ss, S5, . . . are areas of particular surfaces in the room; a1, as, a3, . . .
are the random-incidence absorption coeflicients associated, respectively, with those
areas; and & is the average sound-absorption coefficient for the room.

Transmission Loss. In architectural acoustics, transmission loss for a wall or panel
is 10 times the logarithm to the base 10 of the ratio of the sound energy incident upon
the wall or panel to the sound energy transmitted through it. The transmission loss
is generally measured under conditions of randomly incident sound waves. The unit
is the decibel.

3b. Letter Symbols and Conversion Factors for
- Acoustical Quantities

LEO L. BERANEK

Bolt Beranek and Newman, Inc.

T absolute temperature, degrees Kelvin
a absorption, energy, acoustic, total in a room
o absorption coefficient, energy

& absorption coefficient, energy, average
Ya acoustic admittance

Ca acoustic compliance

G4 acoustic conductance

ZTa acoustic excitability

Yya acoustic immobility

Za acoustic impedance (complex)

Ma acoustic mass (inertance)

24 acoustic mobility

Wa, Pa acoustic power

Xa acoustic reactance

Ra acoustic resistance

TA acoustic responsiveness

B4 acoustic susceptance

ba acoustic unexcitability

ga acoustic unresponsiveness

Ya admittance, acoustic

Ye, Y admittance, electric

Yu admittance, mechanical

Yr admittance, rotational

Ys admittance, specific acoustic

A, ® amplitude of velocity potential

Q angle, solid '

¢ angular displacement

w angular velocity (2wf)
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fa

PO, Po

Ce
poC

@ q

o
Ca

Cs

Cu

Cr

E’ 17’ g_; EI, Eu’ Ez
Uy U, W; Uzy Uy, Us
s

G4

Gg, G

Gy

Gr
G

S

Zs, 7
Py, Wz, P, W
Xz, X
Bz, R

p
Bz, B

antiresonant frequency - :
area (diaphragm, tube, room, or radiator) -
atmospheric pressure

attenuation constant ;

average absorption coefficient, energy

capacitance, electrical

characteristic impedance

charge, electric

coeflicient of absorption

compliance, acoustic

compliance, specific acoustic

compliance, mechanical

compliance, rotational

components of the particle dlsplacement in the z, y, z directions
components of the particle velocity in %, y, z directions
condensation

conductance, acoustic

conductance, electric

conductance, mechanical

conductance, rotational

conductance, specific acoustic

conductivity, thermal

current, electric

current, volume (volume per second) (volume velocity)

decay constant

density, energy

density of the medium (instantaneous)
density of the medium (statlc)
dielectric coeflicient

dilatation

directivity index

directivity ratio

displacement, angular
displacement, linear
displacement, particle
digplacement, volume

distance from source

distance, linear

elasticity, shear

" electric admittance

electric capacitance

electric charge

electric conductance

electric current

electric impedance (complex)
electric power

electric reactance

electric resistance

electric resistivity

electric susceptance



poC

Ly, IL
14
T, Ex

T, &
S, T1

Ly, LL
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electromotive force, voltage
energy

energy density

energy, kinetic

energy potential
excitability, acoustic
excitability, mechanical
excitability, rotational
excitability, specific acoustic

field strength, magnetic
flare coefficient in a horn
flux density, magnetic
flux, magnetic

force

frequency

immobility, acoustic

immobility, mechanical
immobility, rotational
immobility, specific acoustic
impedance, acoustic (complex)
impedance, characteristic
impedance, electric (complex)
impedance, mechanical (complex)
impedance, rotational (complex)
impedance, specific acoustic (complex)
index of refraction

inductance

inertance, acoustic mass N
inertia, moment of

- intensity

intensity level, decibels

kinematic viscosity ,
kinetic energy (inductive energy)

leakage coefficient, magnetic

length of a vibrating string, pipe, or rod
level in decibels, general

linear displacement

linear distance

loudness, sones

loudness level, decibels or phons

magnetic field strength
magnetic flux

magnetic flux density
magnetic leakage coefficient
magnetomotive force
magnetostriction constant
mass

mass, acoustic

mass, specific acoustic
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Yu
Cu
Gu
M
Ym
Zy
M
Wwum, Pu
Xu
Ry
M
Bu
bu
am
2A
M
2R

zs

Y, E

Lyr, NR
N

£

E; 7, Ezy Eu: &
Ua

Us U, W Uz, Uy, Uz
Us

Um

Up

u

P

T

0’ ¢7 w

B

Jiiy Giiy di

q

mechanical admittance
mechanical compliance
mechanical conductance
mechanical excitability
mechanical immobility
mechanical impedance (complex)
mechanical mobility
mechanical power
mechanical reactance
mechanical resistance
mechanical responsiveness
mechanical susceptance
mechanical unexcitability
mechanical unresponsiveness
mobility, acoustic

mobility, mechanical
mobility, rotational
mobility, specific acoustic
modulus of elasticity
moment of inertia,

noise reduction, decibels
number of turns

particle displacement

particle-displacement components in the z, y, z directions

particle velocity (average)
particle-velocity components in the z, y, z directions
particle velocity (instantaneous)
particle velocity (maximum)?
particle velocity (peak)!

particle velocity (rms)

perimeter

period T = 1/f

phase angle

phase constant

piezoelectric constants

Poisson’s ratio

porosity (of an acoustical material)
potential energy (capacitive energy)
potential, velocity

potential, velocity, amplitude
power

power, acoustic

power, electric

power, mechanical

power, rotational

pressure, atmospheric

pressure, sound (average)
pressure, sound (rms)

pressure, sound (instantaneous)

3-21

1 For definitions of ‘“‘peak” and ‘‘maximum’ see American Standard Acoustical Ter-
minology (ASA Z24.1-1951). :
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Pm pressure, sound (maximum)!
Do pressure, sound (peak)?!

v, T propagation constant

a radius of a diaphragm, tube, or radiator
Q ratio of mass (or inductive) reactance to resistance
v ratio of specific heats

X4 reactance, acoustic

Xg, X reactance, electric

Xy reactance, mechanical

Xkr reactance, rotational

Xs reactance, specific acoustic

n refraction, index of

T relaxation time

G reluctance

R4 resistance, acoustic

Rg, R resistance, electric

Ry resistance, mechanical

Rpg resistance, rotational

Rs resistance, specific acoustic

P resistivity, electrical

rA Iresponsiveness, acoustic

™ | responsiveness, mechanical

TR responsiveness, rotational

rs responsiveness, specific acoustic
T, teo reverberation time

R room constant aS/(1 — &)

Yr rotational admittance

Cr rotational compliance

Gr rotational conductance

TR rotational excitability

Yr rotational immobility

Zg rotational impedance (complex)
2R rotational mobility

Wke, Pr rotational power

Xer rotational reactance

Rr rotational resistance

TR rotational responsiveness

B rotational susceptance

br . : rotational unexcitability

gr rotational unresponsiveness
Ls, SL sensation level, decibels

I shear elasticity

A, U,y simple source strength

Q solid angle

Lw, PWL sound power level, decibels

Da sound pressure (average)

yJ sound pressure (instantaneous)
PM sound pressure (maximum)!
Pp sound pressure (peak)!

1For definitions of ‘“‘peak’” and “maximum’ see American Standard Acoustical Ter-
minology (ASA Z24.1-1951).
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QW™
w

8
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r
Lz, TL

ba

bu

bs
ga
aM
gr
gs

€
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sound pressure (rms)

sound pressure level, decibels
source, simple, strength of
source, distance from

specific acoustic admittance
specific acoustic compliance
specific acoustic conductance
specific acoustic excitability
specific acoustic immobility
specific acoustic mass

specific acoustic mobility
specific acoustic reactance
specific acoustic resistance
specific acoustic responsiveness
specific acoustic susceptance
specific acoustic unexcitability
specific acoustic unresponsiveness
specific heats, ratio of

speed of sound

stiffness

strength of a simple source
susceptance, acoustic
susceptance, electric
susceptance, mechanical
susceptance, rotational
susceptance, specific acoustic
system-rating constant

temperature, absolute, degrees Kelvin
tension (force) in a membrane or string
thermal conductivity

thickness

time

time, relaxation

time, reverberation

torque

total acoustical (energy) absorption in a room
transmission coeflicient, energy, barriers
transmission loss of building structures, decibels
turns, number of

unexcitability, acoustic
unexcitability, mechanical
unexcitability, rotational
unexcitability, specific acoustic
unresponsiveness, acoustic
unresponsiveness, mechanical
unresponsiveness, rotational
unresponsiveness, specific acoustic

~ velocity

velocity, angular (2«f)
velocity of sound
velocity, particle (average)
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Ug velocity, particle (instantaneous)
Um velocity, particle (maximum)*
Up velocity, particle (peak)!
U velocity, particle (rms)
¢ velocity potential
A, ® velocity potential amplitude
U velocity, volume
7 viscosity, dissipative or frictional
v viscosity, kinematic
E, e voltage, electromotive force
V volume
U volume current; volume velocity
X volume displacement
U volume velocity; volume current
wavelength
w 2nf  2r
wave number, — = — = —
c c A
width
Y, E Young’s modulus

TaBLE 3b-1. CONVERSION FACTORS FOR ACOUSTICAL QUANTITIES

Multiply the B To obtain the Conversely
number of y number of multiply by

Acoustic ohms...........[ 10° Mks acoustic ohms 10—®
Atmospheres............ 406.80 Inches of water at 4°C 2.458 X 1073
Centimeters............. 102 Meters 102
Cubic centimeters........ 10-8 Cubic meters 10¢
Dynes.................. 1078 Newtons 105
Dynes/cm?2..............| 1071 Newtons per square meter 10
Ergs................... 1077 Joules 107
Ergs per second........ .. 107 Watts 107
Ergs per second /em?. . . .. 103 Watts per square meter 103
Gauss...........c.o... 10— Webers per square meter 104
Kilograms.............. 103 Grams 103
Mechanical ohms. .. ... .. 1073 Mks mechanical ohms 103
Meters. . ............... 102 Centimeters 102
Microbars...............| 1071 Newtons per square meter 10
Newtons................| 10° Dynes 105
Newtons per square meter | 10 Dynes per square centimeter | 107!
Pounds per square foot. .. 0.4882 | Grams per square centimeter | 2.0481
Rayls.................. 10 Mks rayls 10!
Watts per square meter..; 107* Watts per square centimeter | 104
Webers per square centi-

meter................ 104 Gauss 10—

1 For definitions of *“peak” and ‘“‘maximum’ see American Standard Acoustical Ter-

minology (ASA Z24.1-1951).




3c. Propagation of Sound in Fluids

FREDERICK V. HUNT

Harvard University

———

3c-1. Glossary of Symbols!

a, ai,; a;
/1, A1

B

¢, Co; €% c®

c
CP; C”
dij

E F G H
E, Ex, Er; Ejise

fy o, £C ), f(R)

Af.
F. F
g(h)

o
N
0C )

material coordinate (31); surface element (12)

surface (12), attenuation per wavelength (76), Avogadro’s number
(95); first order vector potential

coeflicient relating Vo and vp (58)

speed of sound, reference speed (25); low- and high-frequency limit
speeds (84) '

speed of thermal wave (78b)

specific heats at constant pressure, constant volume (14)

rate of deformation tensor (9)

material differential operator (2)

algebraic abbreviations (74)

energy densities per unit mass (60), (12); degraded component of
internal energy (66) .

frequency, sum of viscosity terms (62), “function of”’ (45), special
tabulated function (75)

critical bandwidth (98)

vector body force per unit mass (6)

tabulated function (75)

material mass coordinate (37), argument of tabulated function (75),
Planck’s constant (89) '

coordinate indexes (1)

average sound-energy-flux density = sound intensity (64)

designation of imaginary axis, [e+i®!] (69)

sound-energy flux vector (54)

phase constant = w/c = 2r/\, Boltzmann’s constant (89), ko =
w/co = 2m /Ny 47

elastic modulus = —V(DP/DV) (25), material constant = /e
(84); isentropic modulus, reference modulus, isothermal modulus

mean free path (86), a sum of linear dimensions (90)

peak particle-velocity Mach number = wko/co (49), molecular
weight (95)

total number of molecules per unit volume (95)

number of modes of vibration (90)

additive terms of indicated order of magnitude (76)

! Numbers indicate equation number in or near which quantity is defined.
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P; Py, P2
P: P“; Pm; Pth
Pl, P2; (P
9, qi5 q

q; 4%, ¢-
R, R, Rl, R,
8, 81

S; S,; Sirr
t; tij

T

u} ul; U, u,2, Uz
Uy, U2

v; 0

D

V; Vi

Ty Ty T3
X; X’

Y

2, Z

a; ag, ag »
3; Bnoige.

Y

8; dij; A

€

m 77,7 B

01) 02

K

)\, Ao

v, v', vB

£ &

P, Po; P1, P2
Try Toy Tk
P2, bn P

€

y Wry Wyy Wk

y Vo, VX
)

~qE e

ACOUSTICS

incremental, or sound, pressure; first- and second-order sound pres-
sures (25)
total pressure (7), equilibrium or reference pressure (25); mean pres-
sure (7), thermodynamic pressure (14)
rms fundamental and second-harmonic pressure (49a); Prandtl
number (72)
heat flux vector (12); Stokes radiation coefficient (21b)
exemplar of state or condition variable (39); superscript indicates
function of spatial (E) variables, or material (L) variables (32b)
vorticity = 5V X u (11d), real part of complex impedance; first- and
second-order components. of vorticity (57)
specific entropy per unit mass (14), first-order condensation = p1/po
(59) L
Stokes number = wn/poce? (72), total interior surface (90); frequency
“hunibet for radiation = w/q (72); entropy generated irreversibly
(15a)
time (2); stress tensor (6)
absolute temperature (12)
particle velocity (1); velocity components _
first- and second-order components of particle velocity (25)
specific volume = p~! (1); mean molecular veIocity (86)
viscosity number = 2 + 7’ /17'(10)
volume (1); residual stress tensor ()
cartesian coordinates (1) ,
frequency number = wnV/poce? (72), specific acoustic reactance (69);
frequency number for relaxation (84)
thermoviscous number = «/70C5 (72) o
specific acoustic impedance ratioﬁ(87),, and impedance (69)
attenuation constant (69); “Kirchhoff” and “classical”’ attenuation
(79a,b) ‘ '
coefficient of thermal expansion = p(dv/8T)p (22); spectrum level =
10 loguo d(p*/pet)/df (98) | |
ratio of specific heats = Cp/C» (14) - .
finite increment (32) ; Kronecker delta (7); dilatation rate = Vv - u (4)
specific internal energy per unit mass (13)

_coefficient of shear viscosity (10), “second” or dilatational viscosity

(10), bulk viscosity (10)
first- and second-order variational components of temperature (25)
thermal conductivity (21a).
wavelength = ¢/f (47); Mo = co/f
kinematic viscosity coefficients (10) = n/p, etc.

displacement of particle from equilibrium (31); partial deriva_tivé

with respect to subscript variable (41b)

densities: total, equilibrium; first- and second-order variational
components -

relaxation times (83, 85)

scalar velocity potential (55); viscous and thermal dissipation func-
tions (16, 18)

complex propagation constant = a + jk (69)

functional relation (71) ‘

angular frequency = 2nxf; relaxation angular frequencies (84)

gradient, divergence, and curl operators

time average
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3c-2. The Motion of Viscous Fluids. The motions of a fluid medium that comprise
sound waves are governed by equations that include (1) a continuity equation express-
ing the conservation of mass, (2) aforce equation expressing the conservation of momen-
tum, (3) a heat-exchange equation expressing the conservation of energy, and (4) one
or more defining equations expressing the constitutive relations that characterize the
medium and its response to thermal or mechanical stress. These equations will first
be presented in their complete exact form in order to provide a rigorous point of
departure for the approximations that must ultimately be made in formulating the
linearized, or small-signal, acoustic equations.

The transformation properties of these equations can be indicated by writing them
in either vectorial or tensorial form, and both forms will be exhibited in order to
facilitate contacts with the rich literature dealing with the motion of fluids.!

Cartesian spatial coordinates will be designated 1, 72, x5, and the vector velocity of
a material particle will be identified as u with components u,, us, us. These will also
be written as z; and u;, where it is implied that the subscript %, , or k takes on suc-
cessively the values 1, 2, 3. The term ‘“material particle’’ denotes a finite mass
element of the medium small enough for the values assumed by the state variables at
every interior point of the particle not to differ significantly from the’values they have
at the interior reference point whose coordinates “locate’ the partlcle

Equation of Continuity. The conservation of mass requires that pV = poV,, where
po and V, are initial and p and V are subsequent values assumed by the density and
volume of a particular material element of the medium. It follows that

pDV + VDp = 0 D—VV= _De (3c-1)
: . p - ‘ ¥y
If poVo is set equal to 1, ¥V becomes the specz'ﬁb volume, v = 1/p; whence the relation
between. the total logarithmic time derivatives of » and p is

1Dv _  1Dp _Dlogv _ _Dlogp

vDi = Dl Dt D - (Be-2)

where D( )/Dt denotes the ¢ ma,tenal” derivative, i.e., one that follows the motion
of a material “particle’” of the medium relative to a fixed spatial coordinate system,
and is defined by o ‘

"Dt ox;
Analysis of the rate of deformation of a volume element yields the kinematical relation

lD _‘ _au,-'
th =divu _A__aa:,-

(3¢c-4)

where A is the dilatation rate. Note that in the last terms of (3¢-3) and (3c-4) sum-
mation is implied over all the allowable values of the subscript index. Equations
(3¢-2), (3¢-3), and (3c-4) can be combined to yield the following equivalent forms of
Euler’s continuity equation:

1 A definitive restatement of the classical-continuum point of view, with critical com-

ments on more than 800 bibliographical references, has been given by C. Truesdell, The
Mechanical Foundations of Elasticity and Fluid Dynamics, J. Rational Mechanics and
Analysts 1, 125-300 (January and- April, 1952), and Corrections and Additions .
J. Ra,twnal Mechanics and Analysis 2, 593-616 (July, 1953). See also Lamb, “Hydro-
dynamics,” 6th ed., Dover Publications, New York, 1945; Rayleigh, * Theory of Sound,”
2d ed. rev., Dover Pubhcatlons, New York, 1945; and L. Howarth ed., ** Modern Develop-
ments in Fluld Dynamies, vol. I, chap. III, Oxford University Press, New York, 1953.

Q—(——).E ( )+ll grad( ) ( )+uta( ) ‘ (30‘3)'
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Dp du; _ dp _Op ou; Pf . _
Dt TP ~at Vo tPag — e Trdive=0
_1Dp . _9p . ;
——;Dt-i-A-—at—l—u grad p + pdivu
3 3
=5§+u-vp+pv-u=£+v-(pu) (3¢-5)

In the last line of (3¢-5), the Gibbs-Hamilton notation has been used for the differen-
tial vector operators, v = grad; v+ = div; Vv X = curl,

Force Equation. The linear-momentum principle can be stated in terms of Cauchy’s
first law of motion,

Du; _ ot;;

(3c-6)

where the vector F; is an extraneous body force per unit mass, and where ¢;; is a second-
rank stress tensor that represents the net mechanical action of contiguous material on
a volume element of the medium due to the actual forces of material continuity. For
an isotropic medium in which the stress is a linear function of the rate of deformation,
as here assumed, the stress tensor can be resolved arbitrarily as the sum of a scalar, or
hydrostatic, pressure function P and a residual stress tensor V;; defined by

tij = —Pé;; +Vi; i =i (8c-7)

where 8;; is the Kronecker delta which equals unity if ¢ = j, but is zero otherwise.
Unless Vi vanishes, P is not identical with the mean pressure, P, = —%—tﬁ. The
resolution given by (3c-7) is both unique and useful, however, if P is made equal to the
thermodynamic pressure Py, defined below. Then the residual stress tensor is given,
to a first approximation, by the linear terms of an expansion in powers of the viscosity
coefficients;

Vi = n'dwdi; + 2ndi; Vii="Vi (3¢-8)
in which d;; is the rate of deformation tensor defined by
= 1 (% | du;
dij = 5 ( 52; T 32 (3¢-9)

and where 7 is the “first,”” or conventional shear, viscosity coefficient. In accordance
with current proposals for standardization, n’ replaces \, the symbol used by Stokes,
Rayleigh, Lamb, et al., to designate the “‘second,”” or dilatational, viscosity coefficient.
The term “bulk’’ viscosity is reserved for (A + 2w)— (0 + %n), the linear combina-
tion of coefficients that vanishes when the Stokes relation holds. Thus, y = first, or
shear, viscosity; ' = second, or dilatational, viscosity;nz = 2" + 27 = bulk viscosity;
v = q/p; v =1n'/p; v& = nz/p (kinematic viscosities);

4 4
()\+2u)—>n'+2n=n3+én=n(§+2n§ = 70 (3¢-10)
V= 4 +18 _ 2 + 1 = viscosity number
3 7 7

Putting (3¢-7), (3c-8), (36-9) into (3¢-6) yields the vector force equation in the
following equivalent forms:

ous ou; oP ad ,
Y4 puy ot = oF s —5;+E(ﬂdkk5ﬁ + 29d;;)

i _;9_{ ox;
oP |, , ux ad (aui auj,)
= pF; oz + 1 9207 + 2 3z, \az; T 9m
a’ch (911, ou; 21 aui an
+ 3miom T oz, 0m; T 9 oa; G0
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p D% — oF — grad P + (r' + 1) grad (div v) + 19°(u)
+ (div u) grad o’ + 2 (grad 5 - grad) u + grad » X curl u (3c-11d)
22 = oF — p(u:V)u — VP + (o +20)V(V 1) — 2V X (V X )
+ (VWY +2(Vn V)u 4 V0 X (VX W) (3e-110)

The vorticity, defined by R = % curl u = 7(V X u), and the dilatation rate, A =
V - u, can be introduced as useful abbreviations. A somewhat more symmetrical
expression in terms of the mass transport velocity pu is obtained if the last form of the
continuity equation (3c¢-5) is multiplied by u and added to (3c-11¢), giving

% +u(V'pu) + (Pu'V)u = pF — VP + 0vVA — 2,’7v X R +AV17’
+ 2(Vn:v)u + 2vy X R (3c-11d)

These equations reduce to the so-called Navier-Stokes equations when it is assumed
that n and »" are constant (Vn = V5’ = 0) and that the Stokes relation holds (yz = 0,
U = §); and still further simplification follows if the motion is assumed irrotational
so that R = 0. If the viscosity coeflicients are to be regarded as functions of one
or more of the state variables, however, the gradients of the m’s must be retained so
that the implicit functional dependence can be introduced by writing, for example,
Vn = (89/dT)VT + - - - -

Energy Relations and Equations of State. The conservation of energy requires that
the following power equation be satisfied:

D(E E
——(—IC‘DP = /V pFiUi av + ,[A tiju; da,- - /A qs da; (30-12)

where E; is the kinetic energy associated with the material velocity, E; is the total
internal energy, V is a volume bounded by the surface A, da; is the projection of a
surface element of A on the plane normal to the +z; axis, F; is the extraneous body
force (per unit mass), and ¢; is the total heat flux vector (mechanical units). After
the surface ‘integrals are converted to volume integrals by using the divergence
theorem, and with the help of (3c¢c-6), this equation reduces to the Fourier—Kirch-
hoff-C. Neumann! energy equation,

De _ 9q;
Py = bithi = az;

(3¢-13)

where ¢ is the local value of the specific internal energy (per unit mass) defined through
E; = /V pedV. It is now postulated that the state of the fluid is completely specified

by e and two other local state variables, which can be taken as the specific entropy s
(per unit mass) and the specific volume v = p~1, in terms of which the thermodynamic
pressure and temperature, and the specific heats can be defined by

€ = e(s,) - Py = — (g—;) T = (%:)

_ ds ds _G
ew=1(3), c=1(3), =%

The second law of thermodynamics can be introduced in the form of an equality,
which replaces the classical Clausius-Duhem inequality, through the expedient of
accounting explicitly for the creation of entropy S (per unit volume) by irreversible

(3c-14)

1 See footnote, p. 3—27.
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dissipative processes;! thus

2 [ esav = [ % o + [, Doeray (3¢-15a)

This relation states that the increase of entropy in a material element is accounted for
by the influx of heat and by the irreversible production of entropy within the element.
The left-hand side of (3c-15a) can also be written, with the help of the continuity

relation, as / v p(Ds/Dt) dV. Then, after converting the surface integral to a volume

integral, the second law can be given in differential form as

.DS . a q; DSirr ‘
PDt = "o T T Dt
_ 1 GQ1 q' 6T DSlrr
A thermal-dissipation function ¢, can be defined by
- _%oT | |
S = — Tom (3¢-16)

whereupon multiplying (3¢c-15b) by T yields the second-law equality in the form

Ds 8 DSur

PTDt— "‘a—‘:"(f’x'*‘T

Taking the material derivative of the basic equation of state (3c-14;) (where the
subscript added to an equation number indicates the serial number of the equality
sign to which reference is made when several relations are grouped under one marginal
identification number), introducing the definitions for Py, and T, multiplying by p, and

using (3c-4), gives

(3¢-15¢)

Ds
Dt~ P Dt Dt

The energy equation (3(:—13) can be recast, using (30—7) and (3¢-9), in the form

ol =2 ¢+ Pud  (Be-lD)

% — Vidis = 4y C (3e-18)

LT Dt €+ PA+
in which V;;di;, the dissipative component of the stress power #i;d;;, is defined as the
viscous dissipation function ¢,. The usefulness of specifying the arbitrary scalar
in (3¢-7) as the thermodynamic pressure, so that P'= Py, becomes apparent when
p De/ Dt is eliminated between (3c-18) and (3c-17), giving

Ds dq;
T 5 Dt = P — P)A + ¢ — x;
S (3¢-19)

T;
The viscous dissipation function (dissipated energy per unit volume) is thus seen to
account for either an: efflux of heat or an increase of entropy. Subtracting (3c-19)
from (3c-15¢) then allows the rate of irreversible production of entropy to be evaluated
directly in terms of the two dissipation functions,
DSirr _ v
Dt = ¢y + [ (30-20)
The total heat;flux vector ¢;, whose divergence is the energy transferred away from
the volume element, must account for energy transport by either conduction or radi-

1 Tolman and Fine, Revs. Modern Phys. 20, 51-77 (1948).

T
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ation. The part due to conduction is given by the Fourier relation, which serves also
to define the heat conductivity «;- :

(q&)com‘; = —K g—xzz
3(qi)oona _ _ 9(kdT/dx:) _ 92T _ T ox
ox; - ' ox; - « dx;® Ax; 0x; (3d_21a)

The last term, containing the gradient of «, must be retained if implicit dependence of
« on the state variables is to be represented. On the other hand, if « is assumed to be
constant, (3c-21a) reduces to the more familiar form

V * Qeond = —«V2T

The component of heat flux due to radiation can be approkimated, for small tem-
perature differences, by Newton’s law of cooling,

‘1%;):—““ = pCA(T — Ts) = V- Qraa (30-21b)
where (I — T,) is the local temperature excess and q is a radiation coefficient intro-
duced by Stokes.! The foregoing thermal relations can be combined with the equa-
tions of continuity and momentum more readily if the term 7'(Ds/Dt) appearing in
(3¢-19) is expressed in terms of the variables u, v, and T. The defining equations
(3c-14) establish that P = P(v,s) and T = T(v,s); from which it follows that one may
also write s = s(Tw) or s = s(T,P). TUsing both of the latter leads, after some
manipulation,? to the identity

Ds DT
R AR DJ
in which 8 is the coefficient of thermal expansion, 8 = p(dv/9T)p. After (3¢-22) and

(3¢-21) are combined with (3¢-19), the energy equation can be written in the alternate
forms

(3c-22)

eC.DT
| D
A —|—u-VT) +&B“—CL)A V- (V) 4 pCoi(T — To) — éy =0 (30-23)
oT . .. =1, __x _VT Vi %
R e o b LER U B SR

The viscous dissipation function ¢, can be eva,luated, with the aid of (3c-8) and
(3¢-9) in the explicit form

oy = V‘l]d]1 = 7] dlckdu + 27ldud1i )
s+ 5n [ (22) + (L) + (Lu) - Jude _guln_tuiu
= B "7 ax;; 6271 axz 39T 6133 dx;3 6:1)1

+ 1 [ 0us + gﬁ?) + (au?' gz:) (6u3 aul ] (3c-24a)

[oJe 29 a3z, o0x3 a9z,

-1 g 09;
o0, X 1O 00

B 6.’1:,; ox;
PCv

The thermal dissipation function ¢, due to heat conduction can be evaluated, with the
aid of (3¢-16) and (3¢c-21a), in the form
- % _ (ﬂ LY
b = T P om T T ar;) .T v1) (3c-24b)
Tt does not appear explicitly in (3c-23), but it is there implicitly as a consequence of
the heat-transfer processes described by (3c-23).
1 Phil. Mag. (4) 1, 3056-317 (1851).

2 See, for example, Zemansky, ‘“Heat and Thermodynamlcs,” 3d ed., pp. 246-255,
McGraw-Hill Book Company, Inc., New York, 1951.
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Summary of Assumptions. The fluid considered is assumed to be continuous except

at boundaries or interfaces, locally homogeneous and isotropic when at rest, viscous,
thermally conducting, and chemically inert, and its local thermodynamic condition is
assumed to be completely determined by specifying three “state’” variables, any two
of which determine the third uniquely through an equation of state. No structural
or thermal “relaxation’’ mechanism has been presumed up to this point in the analysis,
except to the extent that ordinary heat conduction and viscous losses may be described
in such terms. Local thermodynamic reversibility has been assumed in using con-
ventional thermodynamic identities based on the second law, but the irreversible pro-
duction of entropy by dissipative processes has been accounted for explicitly. It is
.also assumed that the stress tensor is a linear function of the rate of deformation, and
that the tractions due to viscosity can be represented by the linear terms of an expan-
sion in powers of the viscosity coefficients. The viscosity and heat-exchange parame-
ters of the fluid , v/, , and g, may depend in any continuous way on the state variables
and hence may be implicit functions of time and the spatial coordinates. Within the
scope thus defined the equations given are exact.

The functional dependence on time and the spatial coordinates of the condition and
motion variables P, T, p, and u can be evaluated, in a formal sense at least, by solving
the set of four simultaneous equations connecting these variables [Egs. (3¢-5), (3¢-11),
(3¢-23), and (3c-15) or one of its alternates]. No general solution of these complete
equations has been given, however, and one or another of the least important terms
are usually omitted in order to render the equations tractable for dealing with specific
problems.

3c-3. The Small-signal Acoustic Equations. The physical theory of sound waves
deals with systematic motions of a material medium relative to an equilibrium state
and thus comprises the variational aspects of elasticity and fluid dynamics. Such
perturbations of state can be described by incremental, or acoustic, variables and
approximate equations governing them can be obtained by arbitrarily “linearizing’’
the general equations of motion. These results, as well as higher-order approxima-
tions, can be derived in an orderly way by invoking a modified perturbation analysis.!
This consists of replacing the dependent variables appearing in (3¢-5), (3c-11), and
(3¢-23) by the sum of their equilibrium or zero-order values and their first- and second-
order variational components, and then forming the separate equations that must be
satisfied by the variables of each order. Two of the composite state variables, for
example p and 7T, can be defined arbitrarily, whereupon the third, P, is determined
by the functional equation of state. These definitions, some self-evident manipula-
tions, and the subscript notation identifying the orders can be exhibited as follows:

p = po + p1 + p2 T=Ty4 6, + 6,
Vp = Vp1 + Vp2 VI =vVvé8 + V6,
Pp,T) = Polpo,To) + p1 + p2
oP oP
pin =)o m +[CD) =10+ e
K—.KT-—p(apT f= e \oT/p o= 9 J:do  po
_K _ G
Y_KT_Cv

002 002
P = 7 (or~+ Bopoby) P2 = ~ (p2 + Bopab2)

u=0+u + u, Vu=A=A14+A,=V'uy +V-ug
pu = [POuI]). + [p1ur + pous]s + - - -
V- (ou) = [poV - uih + [PV -t + u1° Vo1 + poV el + « « »

1 Eckart, Phys. Rev. 73, 68-76 (1948).
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Terms containing Vpo have been omitted in writing out V - (pu), on the assumption
that po, To, and P, are constant and uo = 0. The reference state need not be so
restricted to one of static equilibrium provided its time and space rates of change are
presumed small in comparison with the corresponding change rates of the acoustic
variables. The extraneous body force F will also be omitted hereafter; it would
become important in cases involving electromagnetic interaction, but it usually
derives from a gravitation potential and affects primarily the equilibrium configura-
tion.! Little generality is sacrificed by omitting F and assuming a static reference,
moreover, since the basic equations characterize directly the equilibrium condition
and since the ‘‘cross-modulation’ effects brought in by nonlinearity are dealt with
adequately through second- or higher-order approximations.

Notice that the foregoing represents a mathematical-approximation procedure that
is concerned only with the precision achieved in interpreting the content of the basic
equations. The accuracy with which the basic equations themselves delineate the
behavior of a real fluid is an entirely different question that must be considered inde-
pendently on its own merits. It follows that, while good judgment may restrain the
effort, there is no impropriety involved in pursuing higher-order solutions of the
acoustic equations, even though the equations themselves may embody first-order
approximations to reality such as that represented by assuming linear dependence on
the viscosity coefficients and the deformation rate.

When the appropriate relations from (3c-25) are substituted in (3c-5), (3c-11), and
(3¢-23), the first-order acoustic equations can be separated out in the form

aPl

+ po(V * uy) = (3¢c-26a)
| PO%% + 2 (1 =+ Bopo _) Vo1 — (neV)V(V * m1) + 20V X (V X w1) =0 (3¢-26b)
poCy 22 4 O D) (9 w) — kw01 + poCty =0 (30-260)

Inasmuch as the first-order effects of both shear and dilatational viscosity and of heat
conduction and radiation have been included, these equations comprehend a visco-
thermal theory of small-signal sound waves. The sound absorption and velocity
dispersion predicted by this theory are discussed below. Note especially that taking
heat exchange into account explicitly by including (3¢-26¢) has precluded the con-
ventional adiabatic assumption and denied the simplifying assumption that P = P(p).

Adiabatic behavior would be assured, on the other hand, if it were assumed at the
outset that « = q = 0, but the behavior would not at the same time be strictly
isentropic so long as irreversible viscous losses are still present and accounted for.
The difference between adiabatic and isentropic behavior in this case is of second
order, however, as indicated by the fact that the second-order dissipation functions
¢ do not appear in the first-order energy equation (3¢-26¢), which is thereby reduced
to yielding just the isentropic relation between dilatation and excess temperature.
It is allowable, therefore, in this first-order approximation, to replace the quotient
(V6:/Vp1) appearing in (3¢-26b) with the isentropic derivative (87 /dp)s = (v — 1) /08,
whereupon the first-order equation of motion for an adiabatic viscous fluid can be
written as

po S + etV — nsVV(V - w) + 2no(V X Ry) = 0 (3¢-27)
If the effects of viscosity, as well as of heat exchange, are to be neglected, the diver-
gence of what is left of (3¢-27) can be subtracted from the time derivative of (3c-26a)

1 But, for a case in which F and Vpo cannot be neglected, see Haskell, J. Appl. Phys.
22, 157-168 (February, 1951).
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to yield the typical small-signal scalar wave equation of classical acousties,

2

o1 _ (ﬁ’ ) Vips (3¢-28a)
ot?

a.nd Wlth the help of the first-order isentropic relation p; = ¢o2(p1)s, this wave equation

becomes; in terms of the sound pressure,

62

" _m__z_;.! = ¢o?V2p, (3c-28b)

38c-4. The Second-order Acoustic Equations. The same substitution of composite

variables that delivered (3¢-26a), (3¢-26b), and (3c-26¢) will also yield directly the -
second-order equatlons of acoustics, which can now be marshaled as follows

"”2 + o w) + V- ) = 0 | (3¢-29a)
po %1';2 + — a(plul) + pour(V - uy) + (“1 V)u
+ — (1 + Bopo ——) Vpz — 700V (V * u3) + 270(V X Ro)
Y Vp2

- (V‘ﬂ;)(v ul) —2(Vy* V)up — 2(Vm) X Ry =0 (3c-29b)

(26“2 + 111 ﬁ C" V20,

_ V0 VKI _ d)

-+ po”Cv V26, il + g6, oC. =0 (3¢-29¢c)

The subscripts appended to x and the 5’s 1mply that ea,ch may be expressed in the
generic form

2Ty, - - 2) =n0(Toypo, -+ ) +m m aT 0 + % To1 4+ - -+ (3¢-30)

No general solution of these complete second-order equations has been given, but they
provide a useful point of departure for making approximations and for investigating
some second-order phenomena that cannot be predicted by the first-order equations
alone. .
3c-b. Spatial and Material Coordinates. FEquations (3¢-26) and (3¢-29) are
couched in terms of the local values assumed by the dependent variables p, P, T, and u
at places identified by their coordinates z; in a fixed spatial reference frame, commonly
called Eulerian coordinates (in spite of their first use by d’Alembert). As an alternate
method of representation, the behavior of the medium can be described in terms of the
sequence of values assumed by the dependent condition and state variables pertaining
to identified material particles of the medium no matter how these particles may move
with respect to the spatial coordinate system. The independent variables in this case
are the identification coordinates a;, rather than the position coordinates; the latter
then become dependent variables that describe, as time progresses, the travel history
of each particle of the medium. Such a representation in terms of material coordinates
is commonly called Lagrangian (in spite of its first introduction and use by Euler).
The Wave Equation in Material Coordinates. The use of material coordinates can
be demonstrated by deriving the exact equations governing one-dimensional (plane-
wave) propagation in a nonviscous adiabatic fluid. Consider a cylindrical segment
of the medium of unit cross section with its axis along -+, the direction of propaga-
tion, and let x and x + éx define the boundaries of 4 thin laminar ‘“particle’”’ whose
undisturbed equilibrium position is given by a and @ 4 éa. The differencez — a = ¢
defines the displacement of the a particle from its equilibrium position and provides a
convenient incremental, or acoustic, dependent variable in terms of which to describe
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the position, velocity, and acceleration of the particle; thus

dul 92 9%t

I (3¢-31)

ax a&

= A / = 25

2(al) = a+Eal) T =ukal) =5

Continuity requires that the mass of the partlcle remain constant during any dis-
placement, which means that

£

poda = pldx = p (6a + o 6a,) oL = 3a 1+ %0 (3¢-32a)

or, for three-dimensional disturbances and in general,

ﬂ) _ 6(251,.’132,273)

oL = 3(aw,anas) (3c-32b)

in which the symbolic derivative stands for the Jacobian functional determinant.
The superscript L is used here and below as a reminder that the dependent variable
so tagged adheres to, or “follows” in the Lagrangian sense, a specific particle, and that
it is a function of the independent identification coordinates. When not so tagged, or
with superscript E added for emphasis, the state variables p, P, T, and the condition
variable u are each assumed to be functions of time and the spatial coordinate z.
The net force per unit mass acting on the particle at time ¢ is — (oL)~10PZ/dz, where
el and PT are the density and pressure at , the “now” position of the moving particle.
However, inasmuch as z is not an independent variable in this case, the pressure
gradient must be rewritten as (3P%/da)(da/dx), from which the second factor can be
eliminated by recourse to (3¢-32a). The momentum equation then becomes just

pod?t  —oPL
M da

(3¢-33)

The adiabatic assumption makes available the simplified equation of state, P = P(y),
and this relation, in turn, allows the material gradient, 8PZ/da, to be written as
—aPL _ (OPL dpt dplL

= e = 2 e
oa oa ¢ Ba (B¢-34)

from which the last factor can be eliminated by using (3¢-32a) again. This leads at
once to the exact wave equation!

825 _ ch 2 62£ —2 ﬁg
az (po) daz ( + aa da? (3¢-35)

The pressure-density relation for a perfect adiabatic gas is P = Py(p/po)?, from
which it can be deduced that

Y 1O T 0

No generalization of comparable simplicity is available for liquids.2 When (3¢-36) is
introduced in (3¢-35), the exact ““Lagrangian’ wave equation for an adiabatic perfect

gas becomes
62 y+1 62 ] ~(v+1) 62
. (zo) o5 = o (1 + 2 - (3¢-37)

In the Lagrangian formulation illustrated above, the choice of a, the initial-position
coordinate, as the independent variable is useful but any other coordinate that

! Rayleigh, ““Theory of Sound”’ vol. I, §249; Lamb, “Hydrodynamics”’ §§13-15, 279-284.
2 But see Courant and Friedrichs, ‘‘Supersonic Flow and Shock Waves,” p. 8, Inter-
science Publishers, Inc., New York, 1948.
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identifies the particles would serve the same purpose. For example, the particle
located momentarily at z can be uniquely identified by the material coordinate

h = j;] ¢ p dz, where h represents the mass of fluid contained between the origin and

the particle. Inasmuch as this included mass will not change as the particle moves,
the use of h as an independent “mass’’ variable automatically satisfies the require-
ments of continuity, with some attendant simplification in the analysis of transient
disturbances. In the undisturbed condition, p = po and z = a, whence the relation
a = h/po allows the independent variables to be interchanged by direct substitution
in (3¢-37).

Material and Spatial Coordinate. Transforms. It is useful to have available a
systematic procedure for converting a functional expression for one of the state
variables from the form involving material coordinates to the corresponding form in
spatial coordinates, or the inverse. One should avoid, however, the trap of referring
to the state variables themselves as Lagrangian or Eulerian quantities; density and
pressure, for example, are scalar point functions that can have only one value at a
given place and time. On the other hand, it is of prime importance to distinguish
carefully (and to specify!) the independent variables when computing the derivatives
of these quantities.

The E and L functions are tied together by the displacement variable £ which pro-
vides a single-valued connection between the a particle and its instantaneous position
coordinate z and which may therefore be regarded as a function of either of its terminal
coordinates a or . This can be indicated [cf. (3¢-31)] by writing z(a,t) = a + £(a,t),
or the inverse relation a(z,t) = ¢ — £(z,t); from which follow the alternate expressions

a=z—£@al) ©=a-+ &l (3¢-38)

The desired coordinate transforms can then be established by means of Taylor series
expansions, the two forms following according to whether the expansion is centered
on the instantaneous particle position or spatial coordinate z, or on the particle’s
equilibrium position or material coordinate a. Thus, if ¢ is used to represent any one
of the variables p, P, T, or u, one of the expansions can be based on the obvious identity

‘IL (a;t) = qE (x,t)x=a+£(z,t)

= ¢F(2,8)s-a + [E( 0 aqE(x t)]

Note that all terms on the right of (3¢-39) are functions of the spatial coordinates and
that each is to be evaluated at the equilibrium position coordinate a. This transform
yields, therefore, the instantaneous value in material coordinates of the variable
represented by ¢, in terms of the local value of ¢ modified by correction terms (com-
prising the succeeding terms of the series) based on the spatial rate of change of ¢ and
the instantaneous displacement.

The inverse transform is derived in a similar way from the identity

& (z,t) = [g%(a;t)]ama—t(ay
2 L
qF(z,t) = [g%(a,0)]ams — [s( ,6) [52( ,t) L(-“—’Q]a_x — -+ - (3c-40)

[E”( )t ——~——6qu($ t)] 4+ .-+ (3¢-39)

T=a T=a

gk (a,t) (a,t) ]

=TI

In symmetrical contrast with (3¢-39), all terms on the right in (3c-40) are functions
of the material coordinates and are to be evaluated for a = . This transform, there-
fore, yields the instantaneous local value of the variable ¢ at the place =z, in terms
of the instantaneous value of ¢ for the now-displaced particle whose equilibrium
position or material coordinate is ¢ = z, modified by the succeeding terms of the series
in accordance with the material-coordinate rate of change of ¢ and the instantaneous
displacement.
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The transforms (3¢-39) and (3c¢-40) indicate that the differences between g’ and ¢F
are of second order, which explains why the troublesome distinction between spatial
and material coordinates does not intrude when only first-order effects are being con-
sidered. It also follows that the first two terms of these transforms are sufficient to
deliver all terms of ¢Z or ¢¥ through the second order. The use of these transforms
can be illustrated by writing them out explicitly for u and p, including all secor.d-order
terms;

ul =g uf = ul — tul = & — t&, (3c-41a)
PL = po(l + e 1= PO(l — & + £a2 - ')
PP = po(1 — & + £ + ££aa) = poll — & + (££4)d] (3¢-41b)

in which the subscripts indicate partial differentiation with respect to a or . The
product of (3c-41a) and (3c-41b) gives at once the relation between the material and
spatial coordinate expressions for the mass transport pu; thus, through second order,

pPu¥ = plul — E(plul)s + £2(pa’ucl) = poltr — (££)a] = polé — ). (3c-42)

It is then straightforward to show that, if the particle velocity & is simple harmonic,
the time average of the local mass transport pFu® will vanish through the second order,
even though the average value of »Z is not zero. Note, however, that the displace-
ment velocity & is measured from an equilibrium position that is here assumed to be
static; the average mass transport may indeed take on nonvanishing values if the wave
motion as a whole leads to gross streaming (see Sec. 3¢-7).

3c-6. Waves of Finite Amplitude. A distinguished tradition adheres to the study
of the propagation of unrestricted compressional waves. That the particle velocity is
forwarded more rapidly in the condensed portion of the wave was known early
(Poisson, 1808; Earnshaw, 1858; Riemann, 1859); and that this should lead eventualiy
to the formation of a discontinuity or shock wave was recognized by Stokes (1848),
interpreted by Rayleigh,! discussed more recently by Fubini,? and has been reviewed
still more recently with heightened interest by modern students of blast-wave
transmission.? ,

By virtue of the adiabatic assumption underlying P = P(p), the speed of sound
is also a function of density alone and may be approximated by the leading terms of its
expansion about the equilibrium density:

2 = .2 - po (Dc ... -
& = [1 26,2 Dp)o + ] (3c-43)
When (3c¢-43) is introduced in the exact wave equation in material coordinates,
(3¢-35), the latter can be recast in the following form, using the subscript convention
for partial differentiation and retaining only, but all, terms through second order:

Dc
— Co2E = ——ga? Po ( LJC 2 -

& Co%aa Co [1 -+ Co DP)O] (Ea )a (30 4:4:)
If it is then assumed that an arbitrary plane displacement £(0,) = f(t) is impressed
at the origin, it can be verified by direct substitution that a solution of (3¢~44) is

wn =r(=2) e[+ 2G0T oo

The density variations associated with these displacements are to be found by entering

(3¢-45) in (3¢-32), and the variational pressure can then be evaluated in terms of the

adiabatic compressibility of the medium. .
Relatively more attention has been devoted to the analysis of solutions of (3c-37)

for the case of an adiabatic perfect gas. For an arbitrary initial displacement, as
1 “Theory of Sound,” vol. II, §§249-253.

? Alta Frequenza 4, 530-581 (1935).
3 See also Sec. 2z of this book, *“Shock Waves,”” pp. 2-231 to 2-236.
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above, the solution of the corresponding wave equation (3¢-37), again including all
terms through second order, is ' ‘

w01 (- N+ 2 B (=D e

Technological interest in this problem centers on the generation of spurious harmonics,
which can be studied by assuming the initial displacement to be simple harmonic,
viz., f(f) = & (1 — cos wt) at the origin. The solution then takes the explicit form

vy+1
8

in which ko is written for the phase constant, ko = w/co = 2mr/Xo.

The most striking feature of the solutions (3c-45) and (3c-47) is the appearance
of the material coordinate @ in the coefficient of the second-harmonic term. As a
consequence, the condensation wave front becomes progressively steeper as the wave
propagates, the energy supplied at fundamental frequency being gradually diverted
toward the higher harmonic components. The compensating diminution of the
fundamental-frequency component would be exhibited explicitly if third-order terms
had been retained in (3c-46) and (3¢-47) inasmuch as all odd-order terms include a
“contribution” to the fundamental. When such higher terms are retained it is
predicted that propagation will always culminate in the formation of a shock wave at
a distance from the source given approximately by a = 2£/(y + 1)M?, where M is the
peak:va,lue of the particle-velocity Mach number.! On the other hand, when dissipa-
tive mechanisms are taken into account, the fact that attenuation increases with fre-
quency for either liquids or gases leads to the result that, except for very large initial
disturbances, a stable value of wave-front steepness will be reached at which the rate
of energy conversion to higher frequencies by nonlinearity is just compensated by the
increase of absorption at higher frequencies. If attention is centered on the funda-
mental component, however, such diversion of energy to higher frequencies appears
as an attenuation and accounts for the relatively more rapid absorption sometimes
observed near a sound source.? ’ '

The variational or acoustic pressure, in material coordinates, can be expressed
generally as a function of the displacement gradients by using the adiabatic pressure-
density relation PEZ = Py(pL/po)? in conjunction with the continuity relation (3¢-32);
thus,

g(a,t) = & [1 — cos (wt — koa)] + ko2&o%all — cos 2(wt — koa)] (8c-47)

PL — Py = p& = yPd — £ + 3(v + D] = (p¥) + pr¥ + o (3c-48)

in which the last member identifies the steady-state alteration of the average pressure
and the fundamental and second-harmonic components of sound pressure. When the
harmonic solution (3c-47) is introduced in (3¢-48), the two alternating components of
pressure for a? > (A/4r)? can be shown, after some algebraic manipulation, to be

pik = +yPoM sin (wt — koa) = + /2 P1sin (ot — koa) (3c-49a)
Pl = 'yPoMzkoa%('y + 1) sin 2(wt — koa) = A2 Py sin 2(wt — koa)  (3c-49b)

in which P; and P, are the rms values of the fundamental and second-harmonic sound
pressures, and M = kofo = wko/co is again the peak value of the particle-velocity Mach
number at the origin. The relative magnitude of P increases linearly with distance
from the origin and is directly proportional to the peak Mach number, as may be
deduced from (3c-49a) and (3¢-49b); thus

Py
P,
1 Fubini, Alta Frequenza 4, 530—581 (1935).
2 Fox and Wallace, J. Acoust. Soc. Am. 26, 994-1006 (1954).

_ Prkoa(y + 1)

) 3c-50
2 V2 +P (3¢-50)

1
=Z(’Y+1)Mkoa P2
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Various experimental studies of second-harmonic generation have given results in
reasonably good agreement with the predictions of (3¢-50).1 ‘
The sound-induced alteration of mean total pressure, or ‘‘average’’ acoustic pres-
sure, is given by the time-independent terms yielded by the substitution of (3¢-47) in
(3¢-48), viz.,
PoM2(y 4+ 1
(pry = + PG+ D) (3¢-51)
Note that this pressure increment is given as a function of the material coordinates,
which means that it pertains to a moving element of the fluid. The local value of the
pressure change can be found by means of the transform (3¢-40), which gives, through
second-order terms, the following replacement for (3c-48);
E L opt » 1 2
p* =p° — 2a = vP, “Ea+§(‘)’+1)€a + &faa (3¢-52)
When (3¢-47) is introduced in (3¢-52), the time-independent terms give the local
change in mean pressure as :

(p%) = + 7———~—P°M2é” —3) (3¢-53)

and since v is usually less than 2, it follows that the local value of mean pressure will
be reduced by the presence of the sound wave, in striking contrast to the increase of
mean pressure that would be observed when following the motion of a particle of the
medium. Negative pressure increments as large as 10 newtons m~2 (100 dynes cm~2)
have been reported experimentally, in reasonably good agreement with (3c-53).

The mean value of the material particle velocity, ul’ = &, vanishes, as may be seen
by differentiating (3c-47). The local particle velocity that would be observed at a
fixed spatial position does not similarly vanish, however, and may be shown, by using
the transform (3c-40) again, to be

uf =& — tha  (uf) = — % coM? = — '%cinoz = —(poco?) YJ) (3c-54)
PoCo
where (J) is the average sound energy flux, or sound intensity.2

3c-7. Vorticity and Streaming. As suggested above, and with scant respect for the
traditional symmetry of simple-harmonic motion, sound waves are found experimen-
tally to exert net time-independent forces on the surfaces on which they impinge, and
there is often aroused in the medium a pattern of steady-state flow that includes the
formation of streams and eddies. The exact wave equation considered in the pre-
ceding section has been solved only for one-parameter waves (i.e., plane or spherical),
and these solutions do not embrace some of the gross rotational flow patterns that are
observed to.occur. It is necessary, therefore, to revert for the study of these phe-
nomena to the perturbation procedures introduced by the first- and second-order
equations (3c-26) and (3¢-29). :

It is plausible that vortices and eddies should arise, if there is any net transport at
all, inasmuch as material continuity would require that any net flow in the direction
of sound propagation must be made good in the steady state by recirculation toward
the source. Streaming effects can be studied most usefully, therefore, in terms of the
generation and diffusion of circulation, or vorticity. More specifically, the time
average of the second-order velocity u; will be a first-order measure of the streaming

! Thuras, Jenkins, and O’Neil, J. Acoust. Soc. Am. 6, 173-180 (1935); Fay, J. Acoust.
Soc. Am. 3, 222-241 (October, 1931): O: N. Geertsen, unpublished (ONR) Tech. Report
no. III, May, 1951, U.C.L.A.

2 Westervelt, J. Acoust. Soc. Am. 22, 319-327 (1950).
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velocity. The vector function describing us can always be resolved into solenoidal
and lamellar components defined by

Uy = —Vops +V X A, Vips = —V U, V2A,; = '—(V X 112) (30-55)

The irrotational component that represents the compressible, or acoustic, part of the
fluid motion is derived from the scalar potential ¢;. The vector potential A, is asso-
ciated with the rotational component comprising the incompressible circulatory flow
that is of primary interest in streaming phenomena.

The failure of the first-order equations to predict streaming can be demonstrated
by writing directly the curl of the first-order force equation (3c-26b). The gradient
terms are eliminated by this operation, since Vv X V( ) = 0, leaving just

%} — »V2R; =0 (3c-56)
Thus the first-order vorticity, R; = 3(V X uy), if it has any value other than zero,
obeys a typical homogeneous diffusion equation. On the other hand, it would appear
to follow that, if R; were ever zero everywhere, its time derivative would also vanish
everywhere and R; would be constrained always thereafter to remain zero. This is not
a valid proof of the famous Lagrange-Cauchy proposition on the permanence of the
irrotational state, but the absence of any source terms on the right-hand side of (3¢-56)
does indicate correctly! that first-order vorticity cannot be generated in the interior
of a fluid even when viscosity and heat conduction are taken into account. Instead,
first-order vorticity, if it exists at all, must diffuse inward from the boundaries under
control of (3¢-56).-

A notably different result is obtained when the second-order equations are dealt
with in the same way. It is useful, before taking the curl of (3¢-29b), to eliminate the
second and third terms of this equation by subtracting from it the product of (e1/po)
and (3¢-26b), and the product of u; and (3¢-26a). In effect this raises the first-order
equations to second order and then combines the information in both sets. The
augmented second-order force equation can then be arranged in the form

po %l_lt_z + 20(V X Rz) + »Vp1V(V * 1) — 2v0p1(V X R1) — 2po(ur X Ry)

—2[(Vn1 + W)us + Vi X (VX w)] + 2(Yn X Ry) + poV (% - ul) + Bi¥ps
— BIV (% plz) - no'UV(V . U2) - V’qll(v * U1) =0 (30-57)

The following abbreviations have been used for the coefficients of Vp: in (3¢-26b) and
of Vpq in (3¢-29b):

e CAR - Des) |
Bi=2 [1 + Bopo Dm)o Ba=2 1 48w (52), (3¢-58)

in which the quotients (V6:/Vp1) and (V6:/Vp:) have been replaced by the correspond-
ing material derivatives D8/Dp, which must be evaluated, of course, for the particular
conditions of heat exchange satisfying the energy equations (3c-26¢) and (3c-29c¢).
This evaluation can be evaded temporarily (at the cost of neglecting VB; and VBs)
by observing that each of the last five terms of (3¢-57) contains a gradient. These
disappear on taking the curl of (3¢-57), whereupon the vorticity equation emerges as
IR,

1
_ét— — V0V2R2 = Q voU (Vsl XV

0
Fst‘) + 0V X (W V)V + vosiVOR,

— »Vs; X (VX R) —V X (u1 X Ry) & po7'V X (Vi X R1)  (3¢-59)
1 St.’Venant, Compt. rend. 68, 221-237 (1869).
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in which s; has been introduced as an abbreviation for the first-order condensation,
81 = p1/po. 'This inhomogeneous diffusion equation puts in evidence various second-
order sources of vorticity: four vanish if the first-order motion is irrotational (R; = 0),
and two drop out when the shear viscosity is constant (Vn: = 0). It is notable that
the dilatational viscosity %’ does not appear in any of these source terms except
through the ratio %'/y that forms part of the dimensionless viscosity number U =
2 4+ (7' /9).

Except for the third source term, which (3¢c-56) shows to be one order smaller than
the change rate of R;, all the vorticity sources would vanish—and the streaming would
“stall’—if the wave front were strictly plane with u,, s;, and 5 functions of only one
space coordinate. Wave fronts cannot remain strictly plane at grazing incidence,
however,! and rapid changes in the direction and magnitude of u, will occur near
reflecting surfaces, in the neighborhood of sound-scattering obstacles, and in thin
viscous boundary layers. As a consequence, the “surface’ source terms containing
R; become relatively more important in these cases.? In other circumstances, when
the sound field is spatially restricted by source directionality, the first source term in
(3c-59) dominates and leads to a steady-state streaming velocity proportional to the
ratio of the dilatational and shear viscosity coefficients—and hence to a unique inde-
pendent method of measuring this moot ratio.? Both the force that drives the fluid
circulation and the viscous drag that opposes it are proportional to the kinematic
viscosity, which does not therefore control the final value of streaming velocity but
only the time constant of the motion, i.e., the time required to establish the steady
state.t

Evaluating the second-order vorticity source terms in any specific case requires that
the first-order velocity field be known, and this calls in the usual way for solutions that
satisfy the experimental boundary conditions and the wave equation. Unusual
requirements of exactness are imposed on such solutions, moreover, by the fact that
even the second-order acoustic equations yield only a first approximation to the mean
particle velocity.

The analysis of vorticity can be recast, by skillful abbreviation and judicious
regrouping of the elements of (3¢c-57), in such a way as to yield a general law of rota-
tional motion, according to which the average rate of increase of the moment of
momentum of a fluid element responds to the difference between the sound-induced
torque and a viscous torque arising from the induced flow.® A close relation has also
been shown to exist in some cases between the streaming potential and the attenuation
of sound by the medium without regard for whether the attenuation is caused by
viscosity, heat conduction, or by some relaxation process; in effect the average
momentum of the stream ‘conserves” the momentum diverted from the sound wave
by absorption.® This principle has so far been established rigorously only for the
adiabatic assumption under which P = P(p), and under restrictive assumptions on
the variability of 4 and U, but its prospective importance would appear to justify
efforts to extend the generalization.

8c-8. Acoustical Energetics and Radiation Pressure. If the kinetic energy density
that appeared briefly in (3c-12) is restored to (3c-18), the change rate of the specific

! Morse, ‘‘ Vibration and Sound,” 2d ed., pp. 368-371, McGraw-Hill Book Company,
Inc., New York, 1948.

2 Medwin and Rudnick, J. Acoust. Soc. Am. 25, 538—-540 (1953).

3 Liebermann, Phys. Rev. 76, 1415-1422 (1949) ; Medwin, J. Acoust. Soc. Am. 26, 332—-341
(1954).

4 Eckart, Phys. Rev. T3, 68-76 (1948).

§ Nyborg, J. Acoust. Soc. Am. 25, 938-944 (1953); Westervelt, J. Acoust. Soc. Am. 25,
60~67 and errata, 799 (1953).

¢ Nyborg, J. Acoust. Soc. Am. 25, 68-75 (1953); Doak, Proc. Roy. Soc. (London), ser.
A, 226, 7-16 (1954) ; Piercy and Lamb, Proc. Roy. Soc. (London), ser. A, 226, 43—50 (1954),
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total energy density (per unit mass), E/p, can be formulated in terms of

,DE/p) _ DGu-w | De

Dt P DI TP
D(zu - D
=20 e Vgt (3c-60)

Material derivatives are used here so that the energy balance reckoned for a particular
volume element will continue to hold as the derivatives “follow” the motion of the
material particles. The mechanical work term on the right in (3¢c-60) can be resolved
into two components by writing P = P, + p, where the excess, or sound, pressure p
now represents the sum of the varlatlonal components of all orders

@=p1+p2+ --°)
Thus

1, /
D(E/p) _ D(zu-w) _ +,,p011’)t Vg + d (3¢-61)

Dt Pt Y

A second equation involving the first two terms on the right of (3¢-61) can be formed
by multiplying the continuity equation (3¢c-5) by p and adding it to the scalar product
of the vector u and the vector force equation (3c-11b); thus

1D
pu- D8 puevpp (304 u)=u‘fv(n,ﬂ’,u)

= pu: + u-vp +pv-u (3c-62)

Du
Dt — PPy Dt

where f, stands for the sum of the five viscosity terms that ‘appéar on the right-hand
side of (3c-11b). Combining this result with (3¢-61) gives

Dty - :
G Doy o

’ D
pD——<g{p)+v-(pu) = —pPof’;—v-q+¢,,.+u-f,,

= +u * f'v
: (3¢-63)

The significance of this result can be made more apparent by using the continuity
equation again, this time in the form (E/p)[dp/0t + V * (pu)] = 0. Adding this
“zero” to the left-hand side of (3c-63), after first using (3¢-3) to express the material
derivative in terms of fixed spatial coordinates, allows the continuity of acoustic energy
to be expressed by

D(E/p) B(E/P)

+ V- (ou) = +uV +V(pU)

+ [E"” +2v. (pu)]

O _ _9.(pu+FEu) —PA —V-q+u-f+é (30-64)

at

The acoustic energy-flux vector can be identified as pu = J, inasmuch as this term
represents the instantaneous rate at which one portion of the medium does mechanical
work on a contiguous portion in the process of forwarding the sound energy. The
time average of the sound-energy flux through unit area normal to u is defined as the
sound intensity, (J) = I, Ordinarily it is only the time average of each term of (30-64)
that is of interest, but the equation itself holds at every instant and asserts that
growth of the total energy density of a volume element is accounted for by the influx
of acoustic and thermal energy across the boundaries of the element, by the energy
dissipated in viscous losses, and by the work done by the equilibrium pressure on the
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" volume element during condensation. The latter component is represented by
(—P¢A) and by a corresponding linear term contained implicitly in E [ef. (3c-19)].
It is omitted in most textbook descriptions of acoustic energy density, the neglect
being justified if at all on the grounds that the stored energy varies linearly with the
dilatation and hence will have a vanishing net value when averaged over an integral
number of periods or wavelengths, or over the entire region occupied by the sound
field. Care must be taken to ensure that it does indeed vanish rigorously on the
average inasmuch as the peak values of this component of energy storage are larger
than the acoustic energy in the ratio Po/p.

Acoustic Radiation Pressure. The appearance of the product Eu as an additive
term in the first right-hand member of (3¢c-64) is notable and represents the net energy
density carried across the boundary of a volume element by convection, the net flow
being measured by the divergence of the particle velocity.! No approximations have
been made in deducing (3¢c-64), which holds, therefore, within the scope of validity
of the basic assumptions. '

It is significant to remark the fact that F is directly additive to p when the diver-
gence term is written as V- (p + E)u, thereby identifying the additive term as a
radiation pressure whose magnitude at every instant is just equal to the total energy
density, E = 4pu+u + pe. This interpretation can be fortified by revising (3c-64)
by expanding V * (Bu) = E(V-u) + u-VE. The last term can be used to restore
the material time derivative of E and the other can be merged with the linear term in
Py, yielding a revised power equation in the form

DE

Dt
The role of E as an additive, or radiation pressure is thus retained in (3c-65) where
its time-independent part is now exhibited appropriately as a slight change in the
equilibrium pressure.

When seeking to evaluate the net mechanical force due to radiation pressure on a
material obstacle or scteen exposed to a sound field, care must be taken to specify the
boundary conditions and to account for all the reaction forces involved, including the
steady-state interaction of the obstacle with the medium as well as the dynamic
interaction of the obstacle with the sound field itself. Thus, for example, if a long
tube is “filled’’ with a progressive plane wave, the walls of the tube, which interact
only with the medium, would experience only the mean increment of the equilibrium
pressure [cf. (3¢-53)], and this would disappear if the walls were permeable to the
medium, but not to the sound wave (e.g. , with capillary holes). On the other hand,
if a sound-absorbing screen were freely suspended athwart the wavefronts, it would
experience just the pressure E shown by (3c-64) to be additive to p; but if the screen
were to form an impermeable termination of the tube it would experience both com-
ponents of pressure, mcludmg changes due to the enhancement of (E) by the reflected
wave.?

3c-9. Sound Absorptlon and Dispersion. The basic manifestation of the absorption
or attenuation of sound is the conversion of organized systematic motions of the
particles of the medium into the uncoordinated random motions of thermal agitation.

= —V:(pu) — (Po+E)A -V -q+ ¢ +u-f, (3¢-65)

1 Schock, Acustica 3, 181-184 (1953).

2 The literature on radlatlon pressure is extensive, and much of it is confusing. The
fundamentals are soundly discussed by L. Brillouin, ‘‘Les Tenseurs en mécanique et en
élasticité,”” Dover Publications, New York, 1946. The influence of oblique incidence and
of the reflection coefficient of the obstacle is discussed in detail by F. E. Borgnis, On the
Forces upon Plane Obstacles Produced by Acoustic Radiation, J. Madras Inst. Technology 1
(2), pp. 171-210 (November, 1953); (3), pp. 1-33 (September, 1954), also a condensed
version in Revs. Modern Phys. 25, 653—664 (1953). A suggestive review, with a critical
bibliography, has been given recently by E. J. Post, J. Acoust. Soc. Am. 25, 55-60 (1953).



3-44 ACOUSTICS

Various agencies of conversion can be identified as viscosity, heat conduction, or as
some other mechanism that gives rise to a delay in the establishment of thermo-
dynamic equilibrium; but all are mechanisms of interaction that lead to the same
result, viz. that the energy of mass motion imparted intermittently to the medium
by the sound source becomes increasingly disordered and ‘“‘unavailable.”” Describing
this in terms of the irreversible production of entropy leads to the definition of dissipa-
tion functions and paves the way for formulating an acoustic energy balance.

Equation of Continuity for Acoustic Energy. This may take the form of a statement
that the mean net influx of sound energy across the boundaries of a volume element
situated in a sound field must just balance the average time rate at which this energy
is degraded, or made unavailable, throughout the volume element by irreversible
increase of entropy; thus, by extension of (3¢-20),

- /A Jida; = v DEd”“ av = [ TDS‘" av = / (o + ¢y) AV (3c-66)

where the sound energy flux vector is J; = pu;, and Egiss is the degraded component
of internal energy associated with the irreversible entropy Si:..

The differential form of (3¢-66) can be obtained in the usual way by using the diver-
gence theorem to convert the surface integral to a volume integral. Then, after
introducing the explicit forms of the dissipation functions, (3c-24a) and (3c-24b), the
acoustic energy continuity relation becomes

3(pus) _ _k f0T\? , Ouk du;

or; ~ et =7555) T 5% o

1 A% ou; ¢'~)ul au,]

K [(aa:j) + (ax,) +2 6:1:, (30-67a)
where it is understood that only the time-independent parts of each side of (3c-67a)
are to be retained. The algebraic complexity of dealing with (3c-67a) is considerably
abated by considering only plane waves, for which case the runnlng subsecripts each

reduce to unity and can be dropped. The plane-wave form of the acoustic-energy
relation then becomes, after introducing P as an implicit variable in vT,

-2 - 2 (e) (3) + o (G) (8e-670)

in which »U has been written for ' -+ 27 [cf. (3¢c-10)]. The thermal dissipation term
can then be maneuvered into more suggestive form by further manipulation involving
the equation of state T = T(P,p) and various thermodynamic identities including the
useful relation that holds for all fluids, 78%? = Cp(v — 1). This leads, still without
approximation, and with the time average explicitly indicated, to

(— a(pu)> - ( )> ,pép [(pc?/Kr) — 1] ( )> (30-68)

(v — 1pc?

_v.J-_- —_

It can now be observed that p, u, and their derivatives must be known throughout
the sound field in order to evaluate the sound energy flux and the dissipation functions
that make up (3¢-67a) or its reduced form (3¢-68). On the other hand, if these field
variables are known explicitly, the effects of dissipation will already be in evidence
without recourse to (3c-68). Such a continuity equation for acoustic energy is there-
fore redundant, as might have been expected inasmuch as the conservation of energy
has already been incorporated in the basic equations (3c¢-5), (3c-15), and (3c¢-23).
Nevertheless, (3¢-68) retains some logical utility as an auxiliary relation, even though
it no longer needs to be relied on for the pursuit of absorption measures, at least for
plane waves.
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Ezxact Solution of the First-order Equations. An exact solution of the complete
first-order equations (3¢-26a), (3¢c-26b), (3¢-26¢) for the plane-wave case, and a defini-
tive discussion of its implications, have been given recently by Truesdell.! The specific
problem considered is that of forced plane damped waves in a viscous, conducting fluid
medium. It is assumed that each of the first-order incremental state and field
variables can be described by the real parts of

Uy = Uyoei®te—(atik)z (8c-69)

and of similar equations for p;, p1, 6;. It is assumed that (u1).—o = uie®* is the
simple-harmonic velocity imparted to the medium by the vibrating surface of a source
located at z = 0, but the other amplitude coefficients may be complex in order to
embody the phase angles by which these variables lead or lag u;. The exponent
expressing time dependence is written +jwi, as required in order to preserve both the
conventional form B + jX for complex impedances and the positive sign for inductive
or mass reactance. The attenuation constant a and the phase constant k = w/c, or
ko = w/co, are the real and imaginary parts of the complex propagation constant
x = a + jk; and ¢o = (9P /dp),} is the reference value of sound speed.

When the assumed solutions (3¢-69) are systematically introduced in (3¢-26a),
(3¢-26b), and (3c-26¢), three algebraic equations in pi, u;, 6; are obtained, as follows:

po(e + ks —Jee =0
2
[Jwpo — 7U(a + jk)2lu, —(a + jk) [E,:— (p1 + ﬂopool)] =0 (3¢-70)

~la @i+ [do - S @bt +ale =0
BO POCv

If these equations are indeed to admit solutions of the assumed form (3c-69), the
determinant of the coefficients of u, p;, and 6; must vanish. The characteristic or
secular equation formed in this way (Kirchhoff, for perfect gases, 1868; extended to any
fluid with arbitrary equation of state by P. Langevin?) turns out to be a biquadratic
in the dimensionless complex propagation variable (« + jk)/ko. Writing this out in
full, however, will be facilitated by first considering the question of how best to specify
the properties of the medium.

Dimensional Analysis and Absorption Measure. Examination of (3¢-70) reveals
that, in addition to (a + jk)/ko and the three independent variables, there are 10
parameters that pertain to the behavior of the medium at the angular frequency w.
One of these could be eliminated, in principle at least, by using the relation 78%? =
(v — 1)Cy, leaving 9 that are independent: C,, C., 1, %/, &, po, €0, 4, and w. Then,
since each of these can be expressed in terms of 4 basic dimensional units (e.g.,
mass, length, time, and temperature), it follows from the pi theorem of dimensional
analysis® that just 5 independent dimensionless ratios can be formed out of combina-
tions of these 9 parameters. This leads to a functional expression of the absorption
measure in the symbolic form

atik _ (S, 7, 10 on 9 (3¢-71)

ko Con «x poc® w

The first two ratios have already been incorporated in v and the viscosity number
UV = 2 + 7'/5; the third is the Prandtl number ® = 5C,/x, and the fourth and fifth
can be identified as Stokes numbers 8 = wn/poce? and S8’ = w/q. The present purpose

1C. A. Truesdell, Precise Theory of the Absorption and Dispersion of Forced Plane
Infinitesimal Waves According to the Navier-Stokes Equations, J. Rational Mechanics
and Analysis 2, 643-741 (October, 1953).

2 Reported by Biquard, Ann. phys. (11) 6, 195-304 (1936).

3 E. Buckingham, Phys. Rev. 4, 345 (1914); Phil. Mag. (6) 43, 696 (1921).
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is served somewhat better by substituting for the third and fourth ratios their products
with the dimensionless viscosity number, thus defining a frequency number X and
thermoviscous number Y through

wnV

X =78 = 2 Y = (P0)! =
poCo

K WK
00, XY = - (3¢-72)
The frequency parameter X also provides a natural criterion for designating fre-
quencies as “low,” “medium,” or “high” according to whether X is much less than,
comparable with, or much greater than unity. It may also be noted that, for nearly
perfect gases, poco® = vPo, from which it follows that Xyus = (w/Po)(nV/v). Hence
variation of pressure may be used to extend in effect the accessible range of frequency
in measurements on gases, and the ratio w/Pois a proper parameter in terms of which
to report such results.

Solutions of the Characteristic Equation. If the dimensionless ratios discussed above
are now introduced in the expanded determinant of the coefficients of (3c-70), the
resulting Kirchhoff-Langevin secular equation can be written as

(1 ~ g—) + (ﬁ—“,:oil—“)2 [1 +iX(1 + +Y) +"’§S‘ j]

NG |
+ (“—Z‘—OJ—) XY(j —+X) = 0 (36-73)

The standard “quadratic formula” can be used at once to solve (3¢-73) for the
reciprocal square of the propagation constant;

[0+ -[ro-m 2]
+ 2 {X[l —e-pr+xe it [ +7(§/ S'”}J”‘ (3¢-74a)

Skillful abbreviation might allow this complete solution to be carried somewhat
further but no algebraic magic can lighten very much the burden of depicting the
behavior of « and k as a function of four independent parameters—and it might have
been five but for the welcome fact that U does not appear except as embodied in X and
Y. Moreover, each parameter that does appear in (3¢-74a) occurs in one or more
product combinations, and hence it can not be assumed in general that the effects of
viscosity and heat exchange will be linearly additive. The common practice of
assessing these one at a time and then superimposing the results must therefore be
considered unreliable unless justified explicitly and quantitatively. Nevertheless,
something must give, and it is customary to abandon first the radiant-heat exchange,
at least temporarily, by letting S8’ become infinite in (8c-74a). With this simplifica-
tion, and with some new abbreviations, (3c-74a) becomes

_2_( Fo V' o 1 47X +4Y) {1 — X2(1 — y¥)? +j2X[1 — 2 — VY]

\a + jk
G +jH =1+jX(1 ++Y) £ (B +jF) (3c-74b)
1 — X2(1 —4Y): F =2X[1-(2—yY] :

E

This equation has two pairs of noncoincident complex roots, but only the one of each
pair that has a nonnegative real part corresponding to real attenuation is to be retained.
These two physical solutions comprise the two branches of a complex square root; one
branch pertains to typical compressional sound waves identified as type I, the other
to so-called thermal waves identified as type II. It is an unwarranted oversimplifica-
tion, however, to describe these simply as “pressure’’ waves and ‘“thermal’ waves
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inasmuch as all the state and condition variables—pressure, density, velocity, tem-~
perature, heat flux, etc.—are simultaneously entrained and propagated by each wave-
type, and waves of both types are always excited simultaneously by any source. On
the other hand, the absorption and dispersion measures for waves of type I and type II
will, in general, be quite different and will vary differently with the frequency parame-
ter X and with the thermoviscous parameters v and Y that characterize the fluid.
For example, type II waves are so rapidly attenuated in ordinary fluids at accessible
frequencies that they cannot be observed, whereas in strongly conducting liquids such
as mercury (and perhaps in liquid helium IT) the absorption for type IT waves becomes
less than for type I waves when the frequency is high enough for X to exceed 31;

It should be noticed, parenthetically, that if the basic first-order equations (3¢-70)
had not been restricted to plane waves, the last term of (3¢-26b) would not have
dropped out. Instead, there would have turned up eventually in (3¢c-70) a pair of
terms in the first-order vector velocity potential A; [see (3¢c-55)] on the basis of which
it would have been predicted that still another type of allowed wave motion can exist
in viscous fluids—a transverse viscous wave that is propagated by virtue of the trans-
verse shear reactions due to viscosity.!

Viscothermal Absorption and Dispersion Measures. The problem of branch deter-
mination arising in the solution of (3¢-64b) has been discussed thoroughly by Trues-
dell.? One view of it can be expressed by writing the formal solution in the explicit
form

H (c_co)2 2(G? 4- H?)

_A__ —
T 2r  +(G* + H) +G

T+ @ HER 16
2¢ =1 £ f(A)(+EH)  2H = X(1 + 1Y) £ (sgn F)gh)(+E}) (3¢-75a)

IR

(upper signs yield type I waves, lower signs type II waves)

h=2 ) =+ VZIH+( + 8 + 1] = + cosh (sinh1 )

(3c-75b)

g(h) = + V2 [+ + k)t — 1] = + sinh F(sinh~1! k) '
where the plus signs associated with roots denoted by fractional exponents indicate
that the principal or positive root is to be used. The solution (3c-75a) can now be
attacked frontally, either by means of power-series expansions for large or small
values of X, or by resorting to brute-force numerical computation for intermediate
frequencies. The several square-root operations on complex quantities required by
* the latter procedure are often facilitated by using the f and g functions defined by
(3c-75b), for which the principal values have been tabulated.?

The clue to a basis for classifying fluids according to their viscothermal behavior is
afforded by no{ng that the algebraic sign of F appears in (3¢c-75a) in such a way as to
interchange the wave types when F changes sign, and that this occurs when (2 — 7)Y
passes through unity. On this basis, one may categorize fluids as strong conductors if
Y is greater than (2 — v)~'. The contrary alternative can be further subdivided
usefully? into weak conductors for which Y is less than v, and moderate conductors
for which Y has intermediate values. Most liquids (including the liquefied noble
gases) qualify as weak conductors, most gases as moderate conductors. On the other
hand, the fact that mercury, the molten metals, and liquid helium II rank as strong

1 Rayleigh, ‘“Theory of Sound,” vol. I1, §§347; Mason, Trans. ASME 69, 359-367 (1947);
Epstein and Carhart, J. Acoust. Soc. Am. 25, 553-565, [557] (1953).

2 C. A. Truesdell, Precise Theory of the Absorption and Dispersion of Forced Plane
Infinitesimal Waves According to the Navier-Stokes Equations, J. Raitonal Mechanics
and Analysis 2, 643—-741 (October, 1953).

8G. W. Pierce, Proc. Am. Acad. Arts Sci. 57, 175-191 (1922).
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conductors emphasizes the value of including a wide range of parameter values in any
general survey of thermoviscous behavior.

For weak or moderate conductors, the absorption and dispersion measures for type
I waves at moderately low frequencies can be expressed with any desired precision by
means of power-series expansions in the frequency number X:

(;—0)2 =1+ %X2[3 4+ 10(y — DY — (v — 1)(7 — 37)Y?] + 0(X*)

v Ei: - %X {1 + (- DY —éxz[s +35(y — DY + (v — 1)(35y — 63)7?
+ (v — D5y — 30y + 33)Y3]} + 0(X5)  (3¢-76)
o A 1

=5 = —X{l + (v = DY —ixm +11(y — )Y — (v — 1)(23 — 11y) V2
oy — D — 10y + 13>Y31} + 0(X%)

Note that a/k = ar\/2r = A /2w, where A is the amplitude attenuation per wave-
length, and that a/ko is similarly related to the attenuation per reference wavelength
No. The series (3¢-76) can be used with confidence for almost any values of v and ¥
so long as the frequency is low enough to keep X < 0.1, and for a somewhat wider
range of X when certain restrictions on y and Y are satisfied.!

On the other hand, for frequencies high enough to make X~2 « 1, the absorption
and dispersion are given, within O(X —2) by

(/) o _ A AOZX (
2X k- 2 = - ko) 2X \
1 — Y
- m (3e-77)

It can be inferred at once from (3c-77) that, for sufficiently high frequencies, dis-
persion is always anomalous (i.e., speed increases with frequency) regardless of v and
Y; that a/k = A/2r approaches the limit 1, and that «/ko and A, recede to zero as
the actual wavelength decreases with respect to the reference wavelength Xo. It also
follows, from comparison of this result with (3c-763), that as frequency increases,

= A/\ = Ao/ will always have at least one maximum that is characteristic of visco-
thermal resonance. The frequency at which this resonance occurs lies in the range
X =1 to 1.7, but the peak is relatively broad and flat and often cannot be located
experimentally with high precision. _

It can also be deduced from (3¢-77) that the asymptotic speed of sound at very high
frequencies will always be determined by viscosity alone, without regard for the form
of the equation of state; thus,

2 *
(x> = _a:fo ‘ (3¢-78a)
Under the same limiting conditions, the asymptotic speed of type II, or “thermal,”

waves is similarly determined by thermal conductivity alone, according to

2wk

POCp

The steady increase of ¢’ with w? predicted by (3c-78b) has sometimes been cited as
a basis for denying that second sound in helium II, which displays small dispersion and
low attenuation,? can be a type II thermal wave of the sort predicted by viscothermal
1 Truesdell, J. Rattonal Mechanics and Analysis 2, 643-741 (October, 1953).

2 Peshkof, J. Phys. (U.S.S.R.) 8, 381 (1944), 10, 389-398 (1946); Lane, Fairbank, and
Fairbank. Phys. Rev. T1, 600-605 (1947).

(D x—ow = (3¢-78b)
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theory. This conclusion is probably correct but the argument is faulty inasmuch as
the vanishing viscosity of the superfluid would make it more appropriate to use as a
type criterion the behavior predicted for the limiting condition X — 0. Thus, if the
Kirchhoff-Langevin secular equation (3¢c-73) is reduced by letting X — 0 while XY is
held fixed, and if XY is then allowed to increase indefinitely as required by the super-
conductivity of helium II, what is left of (3¢-73) does have a pair of roots for which the
attenuation vanishes and the speed is nondispersive, viz., « = Ao, = 0, and ¢ = ¢o/~3.
This result looks, at first sight, like just an isothermal velocity for type I waves, as
might be expected to prevail if uniform temperature were enforced by infinite con-
ductivity. On the other hand, the wave types would be expected to interchange,
according to (3c-75a), as Y becomes very large; and one has also to deal with the
standing conclusion that any viscosity however small will eventually take over control
of dispersion when X departs sufficiently from zero. These remarks are intended to
emphasize primarily the fact that the problem of branch determination, or type
identification, under such extreme circumstances needs probably to be attacked by
considering the relative rates at which the various limiting conditions are approached.
Other considerations need also to be taken into account, of course, in dealing with the
two-fluid-mixture theory of liquid helium; but it seems clear that further inquiry 1is
warranted concerning the relevance of classical viscothermal concepts now that a more
exact theory of these effects is available.

The Kirchhoff approximation for weak or moderate conductors at low frequencies
can be obtained directly from (3¢-76) by neglecting terms in X2 or higher. The dis-
persion is thereby predicted to be negligible; so that ¢ = co; and the “Kirchhoff”

attenuation ak is given by
1 v —1
5 koS (‘U + ) )

_ (r — Dk
-5 [,,fo + _0,.—‘] (3¢-79a)

If the Stokes relation is then presumed, by setting U = 4 (which neither Kirchhoff
nor Stokes himself did in this connection), (3¢-79a) becomes

o R L
ac = 3 koS (3+ - )—2,,0003 [31,-;- . (3c-79b)

The absorption predicted by (3¢c-79b) is commonly, but not very appropriately,
referred to as ‘“classical”’; but such an emasculated theoretical prediction neither
accounts adequately for the attenuation observed experimentally, except in the case
of a few monatomic gases, nor does it do justice to the essential content of the classical
theory of viscous conducting fluids.

Even when terms through X? are included, no change occurs in the odd function
a/ko, but dispersion is then predicted according to (3¢-76,) which accounts for the
second-order effects of both compressional and shear viscosity, heat conduction, and
their interaction. This dispersion is anomalous for weak or moderate conductors
(small Y) but becomes normal if the speed-reducing influence of thermal conductivity
becomes large enough to make (7 — 3y)Y > 10. On the other hand, if heat exchange
were to be ignored altogether, the first two terms of (3¢-76,) would give, for the dis-
persion due to viscosity alone,

c\?2 . 3 3 [ wnV\2
—_ = - 2 = =
(Co) T+3X 1+4(
(44

poCo?
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Absorption and Dispersion Due to Heat Radiation. The effects of heat exchange by
radiation, which were abandoned above in order to make (3¢c-74) more manageable,

ax = %ko[X + (v — DXY] =

(3c-80)
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can now be assessed by reverting to (3¢c-73). The nonlinear interaction between
radiation and viscosity will be neglected, for the sake of expediency, even though
(3¢c-74) suggests that it may be as large as second order. The primary effects of
viscosity and heat conduction can be eliminated from (3¢-73) by letting both X and
XY go to zero while holding the frequency variable 8’ = «/q finite. This reduces the
characteristic secular equation to the simple quadratic form

V(S — ) + (" ',fo"’“)z (v =) =0 (3e-81)

which can be solved directly to yield the following exact expressions for the attenuation
and dispersion due to radiation alone:

5 () =5 (%) = o
r\c/) k 2[1 + (+8')?
:/h) 2 a _ 1 (1 + S/);(l _|,_ 723'2)% — (1 __|__ 'YSlz)
=) = (&) =27 T F 52 (8e-52)
Co v.(1 +¥8?) + (1 + 831 + 28"}
These equations indicate that both attenuation and dispersion become vanishingly
small for either very large or very small values of S’, and that a maximum of attenu-

ation occurs in mid-range, near the single point of inflection of the dispersion curve.
This absorption peak is characterized by

3 — 3
(C_‘f) -l S'maxa = v} Trad = 2myt
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There is a curious dearth of quantitative information concerning the radiation
coefficient q, and little is added to this by noticing the low attenuation and negligible
dispersion observed for a wide range of audible sounds in air since these might corre-
spond to values of S’ either far above or far below the resonance peak described by
(3¢c-83). The choice 8’ > 1 is unambiguously dictated, however, by the fact that the
observed speed of sound is very close to the isentropic value c,, whereas (3¢-82s) indi-
cates that the isothermal speed co/v* would prevail if g were large enough to make S’
small for all audio frequencies. Truesdell! has pointed out that these conclusions
leave still in effect a prediction that at some lower subaudible frequency a peak of
attenuation should appear with a magnitude 4, = 0.1857 (=5 db per reference wave-
length). This absorption peak has not been observed yet, at least deliberately,
although its possible bearing on the acoustical character of thunder might be worth
investigating.
 Relazation Processes and Sound Absorption. The foregoing analysis of heat
exchange by radiation puts in evidence the first example of what would now be called
a typical relaxation process. The characteristic feature of such a process, in so far
as the gross hydrodynamical response of the medium is concerned, is the existence of
two relations among the state variables, one of which prevails asymptotically for slow
variations, the other for rapid changes. Such bivalent behavior is typical of fluid
mixtures containing two interacting components, such as a partly dissociated gas? or
an ionic solution.®? In these cases the relative concentrations of the two components
either follow faithfully, in quasi-static equilibrium, the dictates of slowly changing
external variables, or else, at the other asymptotic limit, they do not change at all

1 C. A. Truesdell, J. Rational Mechanics and Analysis 2, 643-741 [666] (October, 1953).

2 Einstein, Sttzber. deut. Akad. Wiss. Berlin Math.-Phys. Kl. 1920, 380-385.
3 Liebermann, Phys. Rev. 76, 1520-1524 (1949).
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when the finite reaction rate is such that the external variables can complete cyclic
changes too rapidly for the concentrations to “follow.” A different but comparable
kind of mixture is exemplified by an ensemble of atoms or molecules capable of being
excited to different energy levels, of which the most common exam ple is a diatomic gas
in which the rotational degrees of freedom may or may not share the cyclic work of
compression depending on whether an appropriately normalized frequency variable
is “low” or “high.”

The physical problem of characterizing the rate-dependent properties of mixtures
can be studied without regard for its acoustical consequences, and various approaches
to this problem have turned on the assignment of two or more different internal or
“partial’’ temperatures, different compressibilities, specific heats, etc. All the
physical theories of pure relaxation appear to converge, however, in predicting the
same acoustical behavior; viz., at*low frequencies an asymptotic speed of sound ¢?, a
transition region of anomalous dispersion (d¢/dw > 0) within which a maximum of
attenuation occurs, and at high frequencies an asymptotic sound speed ¢* which can be
related to ¢® by writing K = ¢%/c» < 1, where K is a material constant of the two-
component medium. It follows then that, when the constant K and a dimensionless
frequency variable X’ can be properly identified and interpreted in terms of the
physical mechanism involved, the acoustical behavior for any pure relaxation process
will be described exactly by the following expressions derived from (3¢-82) and (3¢-83)
by substitution:

c\* _ 2(1 4+ X2
' (E)) T 14+ KX+ [(1 F KX'DH(1 + X))
L 14X
T 1+ K2X"2
afc\? 11 — KX’
k (?) T2 14X

(3c-84)

(g 1 - K (_05) _ 1 - K2
k)m "1+ K ko/mex [8(1 + K2}
’ c® ’

L c _ {3+ K2\}
Xaxa = K70 == Xjppa, = W)

max A

These equations revert exactly to (3c-82) and (3¢-83) when the substitutions K2 = ¥,
and X' = +§’, are made, and when a factor v~1 is introduced to convert the low-
frequency reference speed c° to the usual isentropic reference c,.

The “‘resonance” frequency characterizing a relaxation process is usually defined
as the angular frequency at which the maximum attenuation per wavelength, A = a),
occurs; thus, w, = 27 /7, = (w/X’)X’max o, Wwhere 7y is the related ‘‘relaxation period.”
It has been pointed out that any mechanism of sound absorption can be interpreted
as a relaxation phenomenon by suitably defining its relaxation time. For example,
viscosity and heat-conduction “relaxation times” and their associated ‘‘resonance
frequencies’’ can be defined by writing

_2r X4 % _2r XY o«
T = ws w30 " poCo? ™= o w —pococh (3¢-85)

- Note that «, is specified in such a way that it reduces to w/X when U has the Stokes-
relation value 3. When these relaxation frequencies are introduced in (3¢-79) and
(3¢-80), the second-order dispersion and the Kirchhoff linear approximation for

attenuation become
3 30\? w?
o1+ ()]

wko [-32:92 + (-1 —‘i]
Wy wWx

)
I

(3c-86)

aK
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When the fluid medium consists of an ideal monatomic gas, the physical significance
of the relaxation times 7, and 7, can readily be interpreted as the time required for
subsidence of a momentary departure from the equilibrium distribution of energy
among the translational degrees of freedom. In the classical kinetic theory of gases,
this recovery time is shown to be approximately L/7, the mean free path divided by
the mean molecular velocity.! The conformity of the definitions (3c-85) with this
concept can then be verified by recalling the kinetic-theory evaluations of viscosity
[n = %pi‘)L], thermal conductivity [(x/Cp) = (5/4v)pPL], and the speed of sound
[c = 0.747]. These considerations show, incidentally, that for such a gas the attenu-
ation per reference wavelength is contributed almost equally by viscosity and heat
conduction, and is proportional to the ratio of mean free path to wavelength.

The precise physical significance of 7, and 7, is less obvious for polyatomic gases and
liquids; but if this is glossed over, the frequency rabios 210w/ wo, Fwo/w D, and 2w/ w,
can be substituted directly for X, ¥, and XY in any of the viscothermal relations
deduced above. Merely introducing these “relaxation” frequencies, however, does
not invest heat conduction or viscosity with any new or different relaxation-like
properties, and the exact viscothermal theory, in whatever symbols expressed, con-
tinues to predict that sound speed will increase indefinitely with frequency, that A,
will display a typical broad maximum for some X in the range 1 to 1.7 (depending on
the thermoviscous parameters v and Y), that (4o)max Will always have about the same
magnitude (a/ko = +), and that the peak in A, can be made to occur at any chosen
actual frequency by suitable assignment of the viscosity number 0. [cf. (3¢-72),
(3¢-85)]. In contrast with this behavior, a pure relaxation phenomenon would call
for the sound speed to level off at the high-frequency limit given by K™, and would
display a maximum in A, that increases in height and retreats toward higher fre-
quencies as the speed increment ¢® — ¢ increases and K varies from 1 toward zero.

Allusion has already been made to the established fact that measured values of
attenuation usually exceed the “classical”’ prediction (3¢-79b) and often exhibit one
or more maxima at finite frequencies. As a matter of fact, even when the complete
consequences of the classical theory are taken into account, and when the viscosity
number is adjusted to make the predicted attenuation at low frequencies correspond
with experiment, the classical viscothermal theory still fails to account for all the
experimental facts, but for a reason that is just the opposite of that usually advanced,
namely, because it then predicts too much attenuation at the resonance peak and at
higher frequencies! In spite of this latent contradiction, the alleged failure of
“classical”’ theory as represented by (3c-79b) (which is, after all, only part of an
approxzimate solution of the linearized first-order equations) has stimulated widespread
efforts to repair its deficiency by invoking a wide variety of relaxation and other
theories,? many of which have been marred by an ad hoc flavor that renders them little
more than examples of ingenuity in curve fitting.

Measurements of absorption and dispersion in rarefied helium gas over a wide range
of the frequency variable S have confirmed in all essential details the pattern of
behavior predicted by the exact viscothermal theory.? Unless the classical concepts of
viscosity and heat conduction are to be abandoned altogether, therefore, logic demands
that the exact viscothermal theory be accepted as the foundation on which to erect
any more complete analysis of sound absorption in media less idealized than rarefied -

1 Jeans, ‘‘Dynamical Theory of Gases,” 2d ed., pp. 260-262, Cambridge University
Press, Cambridge, England, 1916.

2 For reviews of what has been called the ‘“exuberant literature’ dealing with relaxation
and other theories of sound absorption, see Kneser, Ergeb. exakt. Naturwiss. 23, 121-185
(1949); Markham, Beyer, and Lindsay, Revs. Modern Phys. 23, 353-411 (1951); Kittel,
Phys. Soc. (London), Repts. Progr. in Phys. 11, 205-247 (1948); see also, for background,
W. T. Richards, Revs. Modern Phys. 11, 36-64 (1939).

3 Greenspan, Phys. Rev. 75, 197-198 (1949); J. Acoust. Soc. Am. 22, 568-571 (1950).
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helium. A good many ‘“honest’ relaxation niechanisms do exist and must be
accounted for, but in the accounting these effects should presumably be regarded as
factors perturbing the fundamental thermoviscous behavior rather than the converse.
The two-fluid-mixture theory of relaxation effects seems best adapted for inclusion in
such a compound analysis, and a start in this direction has already been made.!
Much remains to be done, however, before this basic acoustical problem can be said
to be understood.

3c-10. Characteristic Acoustic Impedance of a Thermoviscous Medium. When the
first-order sound pressure p; is put back into (3¢-70,) [by tracing its last term back
through (3c¢-25:;)], this equation of motion can be rewritten at once in terms of the
specific acoustic impedance, as follows:

[Jwpo — (& + k) Vlus — (a + jk)pr =0
g_i = Z = jkpoc(e + jk)~ — nO(a + jk)

-1 2
= oo (1-0%) —ioe 22 (2) (1-4%).  @es)

poCo®
i JUR SR\ W @”( _'5‘_‘)
pocur  ° (1 ch) JX(C) 1-7%

The normalized specific impedance, or specific impedance ratio, (p1/pocus) = z, which
would be unity in the nondissipative case, is now in a form to be evaluated by direct
substitution of the series expansions (3¢-76). After some manipulation, and retaining
only terms through X2 and Y2, the impedance ratio can be put in the form

o ==L ()] i[5 -2 (9)]
1 -3 X0 + 4y — DY + (v — D2Y7] + 0(X¥)

—; {1 X[ — (v — DY] + O(Xa)} (3¢-88)

2

It follows that sound pressure lags the particle velocity when (y — 1)x/70C, is less
than unity, as it is for the common fluids under ordinary conditions; but pressure leads
the particle velocity when the ratio of heat conductivity to viscosity is high enough to
make (y — 1)x > 90C,.

8c-11. Thermal Noise in the Acoustic Medium. The mode of motion that is heat
furnishes a restless background of noise that underlies all acoustical phenomena. The
magnitude and nature of this thermal noise can be assessed by appealing to concepts
drawn from such apparently unrelated sources as architectural acoustics, elementary
quantum theory, and the classical kinetic theory of gases.

The scheme of analysis can be described simply: the thermoacoustic noise energy
density, as measured by the mean-square sound pressure, is set equal to the density
of the internal energy of thermal agitation associated with the translational degrees
of freedom of the molecules composing the medium. It is then postulated that these
molecular motions of thermal agitation can be regarded as a vector summation of the
motions associated with a three-dimensional manifold of compressional standing
waves, each behaving as it would in an ideal continuous medium having the same
gross mechanical and elastic properties that characterize the actual medium. Each
of these standing-wave systems thus constitutes an allowed, thermally excited, normal
mode of vibration, or degree of freedom, to which can be assigned, in accordance with
elementary quantum theory, the average energy

1Z. SBakadi, Proc. Phys.-Math. Soc. Japan (3) 23, 208-213 (1941); Meixner, Acustica
2, 101-109 (1952).
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Energy hf
Mode ~ exp (hf/kT) — 1

(3¢-89)

where k is Planck’s constant, k is Boltzmann’s constant, 7' is the absolute temperature,
and f is the frequency in cycles per second.

" The incremental number of such energy-bearing modes of vibration is given by the
count of normal frequencies lying between f and f + df; and this is given, as in the
theory of room acoustics,! by

4x
N = ( i ’;‘j{ + 20) df (3¢-90)
where V is the volume, S the total surface, and L the sum of the three dimensions
of the region under consideration, and where the three terms represent, respectively,
the normal-frequency ‘“‘points’’ distributed throughout the volume, over the coordi-
nate planes, and along the coordinate axes of an octant of frequency space. If the
three dimensions of the region are not too disparate, S can be approximated by 6V4,
and L by 3V3, giving

_4xVPdf[, 3\, SN
aN = [1 + o+ ‘—swva] (30-91)

For sufficiently high frequencies, this reduces to the classical expression (Rayleigh,
1900; Jeans, 1905) for the distribution of normal frequencies,

(3¢-92)

an aymptotic form that can be shown (Weyl, 1911) to be independent of the shape of
V and rigorously valid in the limit when N = ¢/f becomes small in comparison with V3.

If attention is confined for the moment to finite frequency bands that do not include
the lower frequencies, the incremental translational energy density of thermal agita-
tion will be given by the product of (3c-89) and (3¢-92). Then, by hypothesis, this
can be set equal to the incremental energy density of the diffuse sound field, which is
given by d({p?)/pc?), where p is the rms sound pressure; thus

<p2> _ (4nfrdf/c)hf

43 = oxp (f/kT) — 1 (8¢-93)
_ xkT /c)f*df (hf/kT)
oxp O /RT) — 1
41rlcT ) 1 1f AP
fdf[ 5+ 12( — .. ] kT) < 4x? (30-94)

The total energy density associated with all the allowed modes of vibration is then
to be found by extending the integral of (3c-94) over all frequencies less than the upper
limiting frequency for which the mode count [by (3¢-92)] is just equal to three times
ny, the total number of molecules in unit volume. This upper frequency limit, Siim, 18
given, for either liquids or gases, by the integral of (3¢-92);

Nim _ 4rfiin® _ 3ny = 34 L 9c3Ap

Vv = 35 17 AL =S 7} (30-95)

where A is Avogadro’s number (6.025 X 1026 molecules/kg mole), p is in kg/m?, and
M is the molecular weight (numeric, 0; = 32). At ordinary room temperature,
fiim =~ 2 X 101 ¢/s for air, ~4 X 10'* ¢/s for water. These frequencies are well
outside the range so far accessible for acoustical experimentation and need not be

1 Maa, J. Acoust. Soc. Am. 10, 235-238 (1939); Bolt, J. Acoust. Soc. Am. 10, 228-234
(1.939).
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considered further except when the foregoing notions are used as the basis for a theory
of specific heats, in which case it is necessary also to take into account vibrational
and rotational degrees of freedom, and to reexamine the equilibrium statistics that
underlie (3¢-89). Note in passing that the phonon of specific-heat theory merely
identifies the burden of internal energy carried by each of the normal modes of vibra-
tion postulated above.

Within the ranges of frequency and temperature ordinarily of interest in the assess-
ment of thermal noise, the exponent hf/kT is so small that even the linear term in the
series expansion of (3c-94) can be omitted. This amounts to a reversion to the
classical analysis of energy partition in continuous media® and to the assignment of an
energy kT to each allowed mode of vibration. With this simplification, (8¢c-94) can
be integrated at once to yield the mean-square sound pressure, in the frequency band

fz - fl, as
(p?) = grkTg (f* — f19) (newtons,/m?2)? (3¢-96)

in which Boltzmann’s constant k¥ = 1.380 X 10~2% joule/deg Kelvin, T is in degrees
Kelvin, pinkg/m3, and cin m/sec. To facilitate computation, it is useful to rearrange
(3¢-96) in the following forms:

Prme = 1.3 X 10712 (g)* [%ﬁ (f2? ——f]ﬁ‘)]i newtons/m? (3c¢-97a)

(prma)air = (.76 X 1010 [2—2;5 (f23 - f13)]§ dynes/cm2 = Mb (30-97b)

1
2

(prms)sea. water = 10.6 X 10710 [Tg; (f23 - fls)] P-b (30-970)
in which the constants have been adjusted to make the temperature factor reduce to
unity at 20°C, and where p/c has been taken as 0.00345 for air and 0.67 for sea
water. It follows, for example, that the rms thermal noise pressure, for the wide-range
audio-frequency band extending to 19 ke/s in air, is just equal to the reference sound
pressure, po = 0.0002 xb.

The power spectrum of thermal noise can be deduced from either (3¢-94) or (3¢-97b)
and may be expressed as a sound spectrum level by writing

2} /D02 ) 47k Tf?
10 log:o (M) = 10 logo ArkT/%

Bnoise = df cpo"'
T
= 10 IOglo [4.33 X ].0—7(]01{0/5)2 59—3]
= —63.6 4 20 logio fiess + 10 logyo 2%3 db (3c-98)

Note that this noise spectrum is not “white’’ but has instead a uniform positive slope
of 6 db/octave, corresponding to an rms thermal-noise sound pressure that is directly
proportional to frequency. On the other hand, for frequencies low enough to make
the additive “correction” terms of (3c-91) significant, the noise spectrum level tends
increasingly to lie above the 46 db/octave line as the frequency approaches the low-
frequency cutoff at which only the gravest mode of vibration can be excited. The
noise spectrum level can also be expected to vary erratically as the low-frequency limit
is approached and the population of normal frequencies becomes sparse, in much the
same way that the steady-state pressure response of small rooms varies irregularly
with frequency when only a few normal modes of vibration are available for excitation.
It does not follow, however, that thermal noise in such a small enclosure could be

! Jeans, “Dynamical Theory of Gases,” 2d ed., pp. 381-391.
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“quieted”’ by the application of sound absorbents. The boundary surfaces, without
regard for their acoustical character, will always reach the same radiative equilibrium
with the interior medium if both are at the same temperature; otherwise there would
be a net flow of therma)l “noise’’ energy across the boundaries in the guise of ordinary
heat transfer.

The possibility that thermal noise might be the factor that limits human hearing
acuity can be assessed with the help of (3c-98). If the critical-band theory of masking
by wide-band noise continues to hold for subliminal stimuli, the effective masking
level of thermal noise can be found by adding, at any frequency, the critical bandwidth
(expressed as 10 logyo Af:) and the spectrum level given by (3¢-98). Comparing this
result with the binaural threshhold for random incidence then leads to the conclusion
that thermal noise remains about 11 to 13 db below threshhold at the frequency of
greatest vulnerability (ca. 3 to 5 kes), even for young people with exceptionally acute
hearing. On this basis human hearing might be assigned a ‘‘noise figure”’ of approxi-
mately 12db. It is probable that some at least of this failure to achieve ideal function
can be ascribed to internal noise of physiological origin. The near miss on thermal
noise limiting gives comforting reassurance, however, that not more than a few decibels
of additional hearing acuity could be utilized effectively by humans even if biological
adaptation were to make it available.

3d. Acoustic Properties of Gases

LEO L. BERANEK

Bolt Beranek and Newman, Inc.

U

A number of the physical properties of a gas are important in determining its
acoustic characteristics. These include density, pressure, temperature, specific heats,
coefficients of viscosity, etc. These properties, and others, are presented and dis-
cussed below in detail.

8d-1. Density. The density po of a number of comgnon gases at standard tem-
perature and pressure is given in Table 3d-1. The density at any temperature and
pressure can be obtained from the expression

B ( P ) (273.16)
P = PO\T760 T

where P is the barometric pressure in millimeters of mercury and T is the absolute
temperature in degrees Kelvin.

8d-2. Atmospheric Pressure and Temperature. The atmospheric pressure and air
temperatufes, and consequently the air density, vary with elevation above the gurface
of the earth. Table 3d-2 gives the air pressure, temperature, and density as a function
of elevation as compiled by Humphreys! and others where indicated.

1 “ Handbook of Chemistry and Physics,” 37th ed. Chemical Rubber Publishing Com-
pany, Cleveland, 1954-1955.




ACOUSTIC PROPERTIES

TaBLE 3d-1. DENsITY po (0°C, 1 atm)

OF GASES

3-57

Gas Formula po, g/liter po, Ib /ft3
Air........... ... ... ... 1.2929 0.08071
1.2920 S 0.0806 S
Ammonia................ NH; 0.7710 0.04813
0.7598 S 0.04742 S
0.7708 C 0.0482 C
Argon................... A 1.7837 0.11135
1.782 S 0.1112 8
1.7828 C 0.1114 C
Carbon dioxide. .. ........ CO, 1.9769 0.12341
' 1.9630 S 0.1225 S
Carbon monoxide. ........ CO 1.2504 0.07806
1.2492 8 0.0779 S
Chlorine. ................ Cl. 3.214 0.2006
3.1638 S 0.1974 S
3.2204 C 0.2011 C
Ethane.................. C.H, 1.3566 0.08469
Ethylene................. C.H, 1.2604 0.07868
Helium.................. He 0.17847 0.01114
Hydrogen................ H, 0.08988 0.005611
Hydrogen sulfide.......... H.S 1.539 0.09608
1.5203 S 0.0949 S
Methane................. CH, 0.7168 0.04475
0.7152 8 0.04462 S
Neon.................... Ne 0.90035 0.05621
0.8713 C 0.8544 c
Nitricoxide. ... ... ....... NO 1.3402 0.08367
‘ 1.3388 S 0.0836 S
Nitrogen................. N, 1.25055 0.07807
1.2568 S (atm) 0.07846 S
1.2499 S (chem) 0.07803 S
Nitrous oxide. ............ N.O 1.9778 0.1235
Oxygen.................. .02 1.42904 0.08921
: 1.4277 S 0.08915 S
Propane................. C:H; 2.0096 0.1254
2.020 8 0.1261 S
Sulfur dioxide......... ... S0, 2.9269 0.1827
. 2.858 S 0.1784 8
Steam (100°)............. H.0 0.5980 0.0373

S = Smithsonian Tables, 9th ed., 1954.
C = J. H. Perry, ‘“Chemical Engineers’ Handbook,”

New York, 1950.

3d ed., McGraw-Hill Book Company, Ine.,

At 0°C a 760-mm column of mercury exerts a pressure of 1.01325 X 10¢ dynes/cm?.

This is standard atmospheric pressure.

When determining the atmospheric pressure

using a mercury barometer, account must be taken of the thermal expansion of
mercury, and the thermal expansions of the glass container and metallic scale.

3d-3. Specific Heat.
at constant pressure, and v, the ratio of C, to C,, are given in Table 3d-3.
specific heat at constant volume.

For several common gases the values of C,, the specific heat

C, is the

Cp is expressed in calories per gram.
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TasLE 3d-2. ATMOSPHERIC PRESSURE, TEMPERATURE, AND DENSITY
As A Funcrion or ELEVATION*}

Elevation Summer Winter

Pres- Density Pres- Density
Km Miles Teoxgp., sure,’ dry air, Te?(q)p ! sure, dry air,

mm Hg g/cm? mm Hg g/cm3
20.0 12.4 —51.0 44.1 0.000092 —57.0 39.5 0.000085
19.0 11.8 —51.0 51.5 0.000108 —57.0 46.3 0.000100
18.0 11.2 —-51.0 60.0 | 0.000126 —57.0 54.2 0.000117
17.0 10.6 —51.0 70.0 | 0.000146 —57.0 63.5 | 0.000137
16.0 9.9 —51.0 81.7 | 0.000171 —57.0 74.0 | 0.000160
15.0 9.3 —51.0 95.3 | 0.000199 —57.0 87.1 0.000187
14.0 8.7 —51.0 111.1 0.000232 —57.0 102.1 0.000220
13.0 8.1 —51.0 129.6 | 0.000270 —57.0 119.5 0.000257
12.0 7.5 -51.0 151.2 0.000316 —57.0 140.0 | 0.000301
11.0 6.8 —49.5 176.2 | 0.000366 —57.0 164.0 | 0.000353
10.0 6.2 —45.5 | 205.1 0.000419 —54.5 192.0 0.000408
9.0 5.6 —37.8 | 237.8 | 0.000470 —49.5 224 .1 0.000466
8.0 5.0 —29.7 274.3 0.000524 —43.0 260.6 | 0.000526
7.0 4.3 —22.1 314.9 0.000583 —35.4 301.6 | 0.000590
6.0 3.7 —15.1 360.2 0.000649 —28.1 347.5 0.000659
5.0 3.1 — 8.9 410.6 | 0.000722 —21.2 398.7 0.000735
4.0 2.5 — 3.0 | 466.6 | 0.000803 —~15.0 455.9 | 0.000821
3.0 1.9 + 2.4 | 528.9 | 0.000892 - 9.3 519.7 0.000915
2.5 1.6 + 5.0 | 562.5 | 0.000942 - 6.7 554.3 0.000967
2.0 1.2 + 7.5 598.0 | 0.000990 — 4.7 590.8 | 0.001023
1.5 0.9 +10.0 | 635.4 | 0.001043 - 3.0 629.6 | 0.001083
1.0 0.6 +12.0 | 674.8 | 0.001100 — 1.3 670.6 | 0.001146
0.5 0.3 +14.5 716.3 | 0.001157 0.0 714.0 | 0.001215
0.0 0.0 +15.7 | 760.0 | 0.001223 + 0.7 760.0 | 0.001290

* ““ Handbook of Chemistry and Physics,” 37th ed.
1 See also See. 2m-8, pp. 2-127 to 2-128.

8d-4. Viscosity. The coefficient of viscosity n of a number of gases is given in
Table 3d-4. The units of » are dyne-seconds per square centimeter or poises.

The ratio 5/p of viscosity to density occurs frequently and is known as the kinematic
viscosity coefficient. It is usually designated by the letter », and has the dimensions
square centimeters per second, in the cgs system. For air, » = 0.151: cm?/sec at
18°C and 760 mm of mercury.

For a plane acoustic wave propagating in an unbounded gas a small attenuation
will occur because of viscosity. The attenuation factor is e~®* for the pressure (or
particle velocity) and
_ 2 n w2 _ 2 wz
“=3,6"3"a
where c is the speed of sound and « the angular frequency of the wave.

8d-5. Thermal Conductivity. The thermal conductivity « of a number of gases is
given in Table 3d-5. The units of « are calories per centimeter-second-degree.

The quantity «/pC, frequently appears in heat-conduction equations. It is often
designated by the symbol «, and is called the coefficient of temperature exchange.
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TaBLE 3d-3. SpEciric HEaT aT CoNsTANT PRESSURE C, AND THE RATIO 7
oF (p To THE Sprciric Hear AT CoNsTANT VoLuMmE C,*
[Cy (cal/g deg); v = Cp/C.]

ACOUSTIC PROPERTIES OF GASES

Gas Temp., °C Co Temp., °C by
Air . ... oo —120 (10 atm) 0.2719 —118 (1 atm) 1.415
(20 atm) 0.3221
(40 atm) 0.4791 + 17 (1 atm) 1.403
(70 atm) 0.7771 | — 78 (1 atm) 1.408
— 50 (10 atm) 0.2440 | — 79 (25 atm) 1.57
(20 atm) 0.2521 | — 79 (100 atm) | 2.20
(40 atm) 0.2741
(70 atm) 0.3121
0 (1 atm) 0.2398 0 (1 atm) 1.403
(20 atm) 0.2484 0 (25 atm) 1.47
(60 atm) | 0.2652 0 (50 atm) | 1.53
50 (20 atm) 0.2480 0 (75 atm) 1.59
(100 atm) | 0.2719 17 (1 atm) 1.403
(220 atm) | 0.2961 20 (3 atm) 1.41
100 (1 atm) 0.2404 100 (1 atm) 1.401
(20 atm) 0.2471
(100 atm) | 0.2600 200 (1 atm) 1.398
(220 atm) | 0.2841
400 (1 atm) 0.2430 400 (1 atm) 1.393
1000 (1 atm) 0.2570 1000 (1 atm) 1.365
1400 (1 atm) 0.2699 1400 (1 atm) 1.341
1800 (1 atm) 0.2850 1800 (1 atm) 1.316
Ammonia. ............... 15 (1 atm) 0.5232 15 (1 atm) 1.310
Argon................... 15 (1 atm) 0.1253 15 (1 atm) 1.668
Carbon dioxide........... 15 (1 atm) 0.1989 15 (1 atm) 1.304
Carbon monoxide......... 15 (1 atm) 0.2478 15 (1 atm) 1.404
Chlorine................. 15 (1 atm) 0.1149 15 (1 atm) 1.355
Ethane.............. ... 15 (1 atm) 0.3861 15 (1 atm) 1.22
Ethylene............. ... 15 (1 atm) 0.3592 15 (1 atm) 1.255
Helium............... .. —180 (1 atm) 1.25 —180 (1 atm) 1.660
Hydrogen............... 15 (1 atm) 3.389 15 (1 atm) 1.410
Hydrogen sulfide. ... ... .. 15 (1 atm) 0.2533 15 (1 atm) 1.32
Methane.............. .. 15 (1 atm) 0.5284 15 (1 atm) 1.31
Neon................o | oo oot 19 (1 atm) 1.64
Nitric oxide.............. 15 (1 atm) 0.2329 15 (1 atm) 1.400
Nitrogen................ 15 (1 atm) 0.2477 15 (1 atm) 1.404
Nitrous oxide............ 15 (1 atm) 0.2004 15 (1 atm) 1.303
Oxygen................. 15 (1 atm) 0.2178 15 (1 atm) 1.401
Propane................ .| ... 16 (0.5 atm) | 1.13
Steam................... 100 (1 atm) 0.4820 100 (1 atm) 1.324
Sulfur dioxide............ 15 (1 atm) 0.1516 15 (1 atm) 1.29

* ‘““Handbook of Chemistry and Physics,” 37th ed.
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The reciprocal of « is often called diffusivity.
For air & = 0.27 cm?/sec at 18°C and 760 mm of

square centimeters per second.
mercury.

ACOUSTICS

In the cgs system the units of « are

A plane acoustic wave propagating in an unbounded gas will be attenuated slightly

TaBLE 3d-4. COEFFICIENT OF VISCOSITY  FOR DIFFERENT (GASES
As A FunxcrioNn oF TEMPERATURE*

o Viscosity, micropoises
Gas Formula | Temp., °C ( dyne-se}cr Jom? Xp 10-%)

AIr. o —31.6 153.9

0 170.8

18 182.7

40 190.4

54 195.8

74 210.2

100 217.5

150 238.5

200 258 .2

300 294 .6

400 327.7

500 358.3

Argon............ . ... .. .. ..... A 0 209.6

23 221.0

Carbon dioxide. ................ CO. 0 139.0

20 148.0

40 157.0
Carbon monoxide. ............... CO 0 166
15 172
100 , 210

Helium.......... ..., He 0 186.0

20 194.1

Hydrogen....................... H. 0 83.5

20.7 87.6

NeOn. ..ot e e Ne 20 311.1
Nitricoxide. . ................... NO 0 178

20 187.6

Nitrogen........................ N. 27 .4 178.1
Nitrousoxide. ................... N0 0 135
OXYEEN. . ..o (8} 0 189

19.1 201.8

127.7 256.8

* “ Handbook of Chemistry and Physics,” 37th ed., and * International Critical Tables.”

because of thermal-conduction effects.

arT

The attenuation constant ar is

k(v — DNw?
vpC.c?

where «/pC, is the coefficient of temperature exchange, v the ratio of specific heats, ¢
the propagation velocity, and » the angular frequency of the wave.
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3d-6. Speed (Velocity) of Propagation. The speed of sound for small sound
amplitudes can be written exactly as!

o= [ (+i=) ]

V2 /3

Where f=—m,'a%/,r
_(Yaoy
9=\RaT)y

_C, _ T [V (2
”‘cvw—”cﬂwfw (a—Tz),,dV

C.= is the specified heat for constant volume as the volume approaches infinity; M,
the molecular weight of the gas, has been substituted for pV; and R, the gas constant,
puts the equation in a useful form. The quantities f, g, h are dimensionless and differ
only slightly from unity as determined by the imperfection of the gas.

TaBLE 3d-5. TuERMAL CoNpuUcTIVITY ¢ OF GASEs AT 0°C*

Gas Formula, Thermal conductivity «

at 0°C (cal/cm-sec-deg)
Air.......... .. c. 0.0548 X 103
Argon................. ... A 0.0387 X 103
Carbon dioxide . . ......... CO. 0.0340 X 103
Helium............... ... He 0.344 X 103
Hydrogen................ H, 0.416 X 1073
Neon.................... Ne 0.1104 X 103
Nitrogen................. N, 0.0566 X 103
Oxygen.................. (O 0.0573 X 103

Steam (100°C)............ H,0 0.0551 X 1072 (100°C)

* Kennard, * Kinetic Theory of Gases,”” MeGraw-Hill Book Company, Inc., New York, 1938,

Thus if the molecular weight, the specific heat, and the equation of state are known,
the velocity of sound under any conditions can be calculated.

For an ideal gas, where PV = RT one can write
where y = 22

=[5 (B - (R (2

The accepted value of ¢, the velocity at standard conditions of temperature and
pressure, for a number of gases is given in Table 3d-6.

The accepted value of the speed of sound in air, ¢, as calculated and checked on the
average by several reported determinations is!

Co

¢o = 33,145 + 5 cm/sec
co = 1,087.42 + 0.16 fps

under the conditions (1) audible frequency range, (2) temperature at 0°C, (3) 1 atm
pressure, (4) 0.03 mole per cent content of CO,, (5) O per cent water content. To

! See Hardy, Telfair, and Pielemeier, J. Acoust. Soc. Am. 13, 226 (1942).
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TasBLE 3d-6. SPrEED (VELOCITY) OF SOUND IN GasEs®

Gas : Formula | Speed, m/sec at 0°C Speed, fps at 0°C
Air............ .. ... ... 331.45 1,087 .42
Ammonia................ NH; 415 1,361
Argon................... A 319 1,046
Carbon monoxide. ........ CO 337.1 1,106
Carbon dioxide. . . .. U COq. 258.0 (low freq.) 846 (low freq.)

268.6 (high freq.)t 881 (high freq.)f
Carbon disulfide.......... C8S; 189 606
Chlorine................. Cl. 205.3 674
Ethylene................. C.H, 314 1,030
Helium.................. He 970 3,182
Hydrogen................ H. 1,269.5 4,165
Illuminating gas.......... cee 490.4 1,609
Methane. ................ CH, 432 1,417
Neon....... P Ne 435 1,427
Nitricoxide.............. NO 325 | 1,066
Nitrogen.................| N2 337 1,096
Nitrous oxide............. N.O 261.8 859
Oxygen.................. (02} 317.2 1,041
Steam (100°C)............ H,0 404.8 1,328

* “ Handbook of Chemistry and Physics,” 37th ed., ‘ International Critical Tables,” and J. Acoust.
Soc. Am.

1 “High frequencies’’ means that the acoustic period is so short that the periodic changes in the
vibrational heat constant cannot remain in phase with the other periodic changes as the sound wave
passes through the gas.

calculate the speed of sound at various temperatures one can write

_ (Ey \/
¢ = ( 273. 16) TERT

= 33 145 Vm—“-l—é cm/sec
°C
= 33,145 (1 + s 57316 cm/sec 273 6 < 1)

where 7' = absolute temperature
°C = temperature, °C
If the gas is made up of a mixture of gases or if water vapor is present the expression

=[5 (8]

can still be uged to calculate the velocity. The molecular weight M of the mixture
can be calculated, or, realizing that RT/M = p/p, the density of the mixture can be
used.

In addition to correcting M (or p) it is necessary to correct C, also. It is incorrect
to take the weighted average of the ratio of the specific heats, v. The weighted

average of the specific heats themselves must be used.

For rough calculations of the variation with humidity or composition, it is probably
sufficient merely to correct for the density of the mixture.

3d-7. Characteristic Impedance. The characteristic impedance is equal to the
ratio of the sound pressure to the particle velocity in a plane wave traveling in an
unbounded medium. It is equal to the density times the velocity of propagation,
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that is, pc. The variation of pc with temperature can be calculated from the expression

C_C(M)*i ravl
pC = poCo\ —7p 760 yis

-~

where poco is the value at 0°C and 1 atm pressure. For air pocy = 42.86 dyne sec/cm?.
Table 3d-7 contains values of poco for several common gases. :

TaBLE 3d-7. CHARACTERISTIC IMPEDANCE po¢ OF CoMMoON Gases aT 0°C
(273.16°K) TEMPERATURE AND 760 MM Hac BAROMETRIC PRESSURE

3
Gas Formula poi;;é y’;lg(-)sz(:éle I?Igat
Air. ... .. o R 42 .86
Argon................... A . 56.9
Carbon dioxide........... CO. 50.8
Carbon monoxide. . ... ... CO 42.1
Helium................. He 17.31
Hydrogen............... H, 11.41
Neon................... Ne 38.5
Nitric oxide............. NO 43.5
Nitrogen................ N. 421
Nitrous oxide............ N0 51.8
Oxygen................. O, 45.3

8d-8. Attenuation. In addition to the dispersion of sound due to wind, turbulence
in the atmosphere, and temperature gradients, two properties of the medium combine
to attenuate a wave which is propagated in free space. The first of these attenuations
is caused by molecular absorption and dispersion in polyatomic gases involving an
exchange of translational and vibrational energy between colliding molecules. The
second is due to viscosity and heat conduction in the medium.

Knudsen! says that ‘“the attenuation of sound is greatly dependent upon location
and weather conditions, that is, upon the humidity and temperature of the air. The
cold air of the arctic is acoustically transparent; the attenuation of sound is not much
more than that attributable to viscosity and heat conductivity; . . . for the hot and
relatively dry summer air of the desert, such as at Greenland Ranch, Inyo County,
California, where the relative humidity may drop as low as 2.4 per cent, the attenu-
ation at 3000 cps is 0.14 db/m, and at 10,000 cycles it is 0.48 db/m.”’

Data on the absorption of audible sound in air are valuable because they are needed
to calculate the reverberation time for high-frequency sound in rooms, for determining
the amplification characteristics of public-address systems for use outdoors, and for
predicting the range of effectiveness of apparatus for sound signaling and sound
ranging in the atmosphere.

Kneser! has treated analytically the problem of absorption and dispersion of sound
by molecular collision. He summarized his results in the form of a nomogram which
has been reprinted along with comments by Pielemeier.? Pielemeier observes that for

1V. O. Knudsen, The Propagation of Sound in the Atmosphere—Attenuation and
Fluctuations, J. Acoust. Soc. Am. 18, 90-96 (1946).

2 H. O. Kneser, The Interpretation of the Anomalous Sound-absorption in Air and
Oxygen in Terms of Molecular Collisions, J. Acoust. Soc. Am. 5, 122-126 (1933); A Nomo-
gram for Determination of the Sound Absorption Coefficient in Air, Akust. Z. 5, 256-257
(1940) (in German).

# W. H. Pielemeier, Kneser’s Sound Absorption Nomogram and Other Charts, J. Acoust.
Soc. Am. 16, 273274 (1945). )
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molecular absorption Kneser’s theoretical values are lower than Knudsen’s! experi-
mental values for reasons not fully understood.

Kneser’s nomogram is reproduced in Fig. 3d-1. By means of it, the attenuation
due to the molecular absorption can readily be found for any ordinary set of conditions
of temperature, humidity, and frequency. For example, if the temperature is 15°C,
and relative humidity is 50 per cent, first locate 15° on the temperature axis, trace left
to the 50 per cent mark, then upward to the middle of the shaded area (upper left),
then to the right to the proper frequency curve (3 ke in this case), then downward
to the K scale. Next begin another tracing at 15°C toward the right until the lower
right curve is reached, then trace upward to the log (M) + 7 scale. Then join the

Ay < <
~ <;.I\\02\\.5 AV &5 1o\ 20N a0 80 ke
e X \\ \ \\ \ \\ N,
= B RN NS NN
He 4 e e —— — - —— — I — —\~ —N—y . y
/207 w0 NN
p il | NN
14 | | ABSOLUTE HUMIDITY \\ \\i
2 3 4 5110 20 30g/m3 - 0 2/ 3 4 K _5
! N 40 l 1 1 |II er l]]-sl T Il]-4‘ ) lll-sl |||[‘r Kl III T lll 1 llll
| | r A // (nepers/m)x2= 10 10 lO/ 00'} 0.l | 10
1 mm
RELATIVE J a4 g
HUMIDITY - I/ /// 4//30 & (db/m) = |o"/{ ool | o1 | 1 ] 10 l
o%/] 20%f1 Yaoy60, a9 ~i00 Qp(@b/ft) =/ 0200 QI | 10
I AW/ VA o 02 | 0l]/02 —=(LogM)}+7
»
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A 4%=l & I(x) = 1(0) &™mX ]
7 °
/ ‘N 3 / | 1ex)=INTENSITY AT X
l// // a _ / x = DISTANCE IN METERS
// -10 / Ol (db/ m) =434 mp, 1
1 A I I

F1a. 3d-1. Nomogram for determining the attenuation in air caused by molecular absorp-
tion. (From L. L. Beranek, ** Acoustics Measurement,” John Wiley & Sons, Inc., New York,

1949; after Kneser.)

end points of the two tracings with a straight line. The value of the molecular
attenuation a.., as read on that scale will be 12 db/km or 3.7 X 103 db/ft. The half
width of the shaded band in the log X chart of Fig. 3d-1 represents the uncertainty
in the log X values. Note that the band changes position slightly with temperature.

The attenuation caused by heat conduction and viscosity of the air a. is not known
so accurately. The classical absorption due to these causes has been thoroughly
described by Lord Rayleigh? and was first derived by Kirchhoff and Stokes as the
relation

2 4
o = an + ar = ép%c; [73:1 + (-1 Ci,,] nepers/cm

" where w/2x = frequency in cycles per second; po = density in grams per centimeter

1V. O. Knudsen, The Absorption of Sound in Air, in Oxygen and in Nitrogen—Effects
of Humidity and Temperature, J. Acoust. Soc. Am. 5, 112-121 (1933).
2 Lord Rayleigh, * Theory of Sound,” The Macmillan Company, New York, 1929.
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cubed; ¢ = speed of sound in centimeters per second; n = coefficient of viscosity in
poises; v = ratio of specific heats; x = coefficient of thermal conductivity in calories
per second-degree-centimeter; and C, is the specific heat at constant pressure in
calories per gram-degree.

Recent papers by Sivian! and Krasnooshkin? have led to somewhat higher values
for the absorption caused by viscosity. The data from these three sources are given
by Fig. 3d-2 and the equations

A

For X in feet, o, = 0.143 X db /ft
For A in meters, a. = 0.0437 % db/m

where X is the wavelength and A4 is given in the curve in Fig. 3d-2.

60x 1075
"
SlVIANé\/ /
50x107° =
/
@ // ]
i =
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5 40x10°% // 8
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z | ]
I~ ¢ =
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// .- CLASSICAL (STOKES)
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F1a. 3d-2. Plot of A in centimeters as a function of temperature: A = a,A2/0.0437, where
A = wavelength in meters, and «, is the attenuation constant in db per meter for a free-
traveling plane wave. The upper line (Sivian) obtained by multiplying the Stokes value
by 1.5, lies closer to measured values than does either of the other two. (From L. L.
Beranek, * Acoustic Measurements,” John Wiley & Sons, Inc., New York, 1949.)

The total attenuation a4 due to both types of absorption is therefore
as = am + a. db/ft (or db/m)

These high values of attenuation appear to come from the H,0 vapor content of the
air, although they cannot be calculated accurately by the Kneser nomogram. At
frequencies above 100 ke for undried air and at all frequencies for dried air, and oxygen
and nitrogen, the measured attenuation is about 1.5 times that predicted by the
Stokes relation.

11.. J. Sivian, High Frequency Absorption in Air and in Other Gases,” J. Acoust. Soc.
Am. 19, 914-916 (1947).

2 P. E. Krasnooshkin, On Supersonic Waves in Cylindrical Tubes and the Theory of the
Acoustical Interferometer, Phys. Rev. 65, 190 (1944). See also W. H. Pielemeier, Observed
Classical Sound Absorption in Air, J. Acoust. Soc. Am. 17, 24-28 (1945).
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Some experimental values by Knudsen and Harris? for the total attenuation a4 at
room temperature and for various values of relative humidity are given in Fig. 3d-3.

An empirical equation, which describes the measured values of Knudsen and Harris
with good accuracy for relative humidities above 30 per cent and at a temperature of
20°C, is given by Cremer?

f{ f \ 028
o4 = (1,000) 20 + é20 db/m

where ¢20 is the relative humidity at 20°C and f is the frequency. For temperatures

0.020
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Fre. 3d-3. Measured values of the energy attenuation constant m as a function of relative
humidity for different frequencies, I(x) = Io exp (—mz). The temperature is assumed to
be about 68°F. (From L. L. Beranek, * Acoustics,”” McGraw-Hill Book Company, Inc.,
New York, 1954: after V. O. Knudsen and C. M. Harris, Acoustical Designing in Architecture,
p. 160, Fig. 8.10, John Wiley & Sons, Inc., New York, 1950.) ’

:

g

differing slightly from 20°C, the measured value of relative humidity should be cor-
rected to give a value.of ¢z to be used in the above equation;

¢20 = ¢:(1 + 0.067A%)

where At denotes temperature departure from 20°C. The quantity a4 is 4.34m, in
the same units of distance.

1V. O. Knudsen and C. M. Harris, “‘ Acoustical Designing in Architecture,” p. 160
Fig. 8.10, John Wiley & Sons, Inc., New York, 1950.

2 Lothar Cremer, ‘‘Die wissenschaftlichen Grundlagen der Raumakustik” (The Scien-
tific Foundations of Room Acoustics), vol. III, S. Hirzel Verlag, Leipzig, 1950.




3e. Acoustic Properties of Liquids
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3e-1. Symbols and Definitions. Unless otherwise speciﬁed, cgs units are used.

p  density \

k  adiabatic compressibility

f  frequency

w 2af

¢  speed of propagation of plane (or spherical) waves (velocity of sound), ¢ = (1/pk)?

pc characteristic impedance

coefficient of absorption, nepers/cm

For viscous absorption o ~ &2(2n + n'Y/2pc3 where n = shear viscosity ‘and

n' = dilatational viscosity. Ce

a/f* -~ absorption constant’ o

db/dd intensity loss in decibels if distance from source is doubled. This unit is
usually used only when loss is due to the geometry of the sound field as in
spherical or cylindrical waves. ‘

R

3e-2. Acoustical Comparison between Liquids and Gases. The acoustical behavior
of liquids is fundamentally identical to that of gases, but the great differences in the
magnitudes of the basic properties, density and compressibility, give rise to notable
differences in the nature of practical sound fields in the two media. Thus the tech-
niques which have been developed for the study of sound in gases cannot generally be
applied successfully to the study of sound in liquids. : ‘

Numerically, the characteristic impedance pc of liquids is three to four orders of
magnitude greater than that of gases. Thus a liquid-gas interface appears as a sub-
stantially rigid boundary to a sound in the gas but as an effective pressure-release
surface to a sound in the liquid. Even a thin film of gas, or a multiplicity of gaseous
bubbles, generally prevents the existence of appreciable sound pressure in the neighbor-
ing liquid. ; :

The compliance of solid boundaries is usually negligible compared with the com-
pressibility of gases but is usually appreciable compared with the compressibility of
liquids. Thus the simple types of sound field which are readily obtained in a gaseous
medium by virtue of effectively rigid boundaries are extremely difficult to realize in a
liquid medium. Types of sound fields from which acoustical properties of liquids can
be determined have usually been obtained in the laboratory at high frequencies.
Most of the published data on such properties were obtained in the megacycle fre-
quency region.

3e-3. Sound Transmission in Large Bodies of Water. Sound transmission at sea
is influenced largely by three factors: the geometry of the sound field, the nature of the
upper and lower boundaries, and refraction. At short ranges, if source and receiver

3-67
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are at sufficient depths, spherical spreading of sonic energy is approximated and the
intensity varies nearly as the inverse square of the range (6 db/dd). At long ranges,
the field roughly approximates a two-dimensional continuum producing cylindrical
spreading whereby the intensity tends to vary as the inverse first power of the range
(3db/dd). There is an intermediate range in which the controlling factor may be the
interference between the direct sound and the sound reflected from the surface. For
sinusoidal sound this interference produces the Lloyd-mirror effect. For broad bands
the intensity tends to vary as the inverse fourth power of the range (12 db/dd).

These trends have been observed. They are dependent on such factors as source
depth, receiver depth, depth of water, smoothness of surface, smoothness and reflec-
tivity of bottom, frequency spectrum, and directivities of transducers. The trends
are modified—sometimes completely masked—by the effects of refraction.

Refraction is caused by gradients in temperature, salinity, density, and currents.
A major effect is a nonuniform distribution of sonic energy, frequently resulting in
shadow zones and skip distances. At times sound channels are formed, i.e., layers
within which the sound is trapped by virtue, for example, of downward refraction near
the surface due to a temperature gradient and upward refraction in deeper water due
to the density gradient. '

Reverberation in water is produced by the scattering of sound by minute particles
of suspended matter, marine life, and other inhomogeneities. Reverberation due to
that portion of the sound which is scattered by the top and bottom surfaces is some-
times called “surface reverberation.”

8e-4. Cavitation. The American Standard Acoustical Terminology gives the
definition (Z24.1, 9.035): ‘“ Cavitation is the formation of local cavities in a liquid as a
result of the reduction of total pressure.” Cavitation may occur as the result of a
sound-wave rarefaction, such as is produced in the negative pressure cycle of an under-
water transmitting transducer, or as the result of the reduction of pressure due to
hydrodynamic flow, such as is produced by the movement at high speed of a propeller
underwater. Broad-band noise is generated by cavitation; a large amount of evidence
indicates that this noise is associated with the collapse of cavitation bubbles. In
many instances the noise of cavitation has been observed to begin before the cavitation
bubbles have been visible to the unaided eye.

In shallow water depths, since atmospheric pressure corresponds to but a low
hydraulic head in liquids, cavitation may occur at moderate sound intensities.
Numerically, at a static pressure of N atm, the intensity of a sinusoidal plane (or
spherical) wave in water at which the total pressure becomes zero at a negative peak
is I ~ N2/3 watts/cm?.

The observed cavitation threshold corresponds in many cases to a substantial nega-
tive pressure, usually reported to have a very variable value. Many degassed liquids
show a tensile strength of the order of an atmosphere. Over very short time intervals
this figure is much higher. The threshold of acoustically produced cavitation thus
depends on the frequency. It also depends on gas content, ion content, and suspended
matter (all cavity-producing nuclei), temperature, viscosity, cleanliness of the con-
tainer, and the past history of the liquid.

Since cavitation bubbles reduce the sound that is radiated by a transducer, trans-
former oils and castor oil, which do not cavitate readily, are sometimes used to trans-
mit sound from the transducer face to:an outer radiating surface at which the intensity
has been spreduced by reading.

8e-6. Dispersion. There is no firm evidence that the speed of propagation of sound
in a simple liquid is dependent on frequency.

3¢-6. Water and Aqueous Solutions. Table 3e-1, taken from the American
Standards Association Acoustical Terminology (Z24.1-1951, Table 9.1), gives various
properties of fresh and sea water under representative water conditions.
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TABLE 3e-1. PROPERTIES OF FRESH AND SEA WATER

Fresh water Sea water

Salinity (parts per

1,000)........... 0 30 36
Temp., °C.........| 4 25 5 20 15 25
Velocity, m/sec....| 1,418.3 1,493.2 | 1,461.0 | 1,513.2 | 1,505.0 1,532.8
Density g/cm3....| 1.00000 | 0.99707 | 1.02375 | 1.02099 1.02677 | 1.02412
Characteristic im-

pedance X 105 7

(cgs units). .. ... . 1.4183 1.4888 1.4957 1.5450 1.5453 1.5698

Hydrostatic pressure increases the velocity by 0.018 m/second per meter of depth. It also increases
the density by approximately 0.0000045 g/¢m? per meter of depth.

The velocities listed in Table 3e-1 are from Kuwaharara’s tables.! More recent
measurements indicate that the velocity in sea water is 3 to 4 m/sec higher.?

Up to 1,000 Mc, no measurable effect of frequency on velocity has been found.

The attenuation in the pressure amplitude of a plane progressive wave is expressed
by p(xr) = pee~2s. The theoretical value of « (Stokes-Kirchhoff) for viscous absorp-
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F1a. 3e-1. Theoretical absorption in water as a function of temperature. (After Hall.)

tion depends on f2. The measured value of « /f* = 21.5 X 1077 em~1reported by Fox
and Rock? for water has generally* been found to hold within experimental limits at
room temperature over a very wide range of frequencies. This number has been

1 Kuwahara, Hydrographic Rev. 16, 123 (1939).

2 Weissler and Del Grosso, J. Acoust. Soc. Am. 23, 219 (1951).

# Fox and Rock, J. Acoust. Soc. Am. 12, 505 (1941).

4 Measured values have, however, been reported over 1,000 times greater than these.



3-70 ACOUSTICS

shown by Hall! to correspond to the Stokes-Kirchhoff expression if bulk (dilatational)
viscosity as well as shear viscosity is taken into account.

Hall’s analysis includes the theoretical effect of temperature on attenuation. The
values plotted in Fig. 3e-1 have been verified by several experiments.

Absorption in organic liquids shows no observable relation to the viscosity. The
increments in sound velocity due to dissolved salts at the low concentrations found in
sea water are found to be proportional to the molar concentration for each salt and
to be additive (see Fig. 3e-2) for a number of salts.

1580 ‘
TEMP — 30°C
MgSO
1560 4 — 4
g / MgC 1,
2 /’COCIZ ;
> o A
[ .
o % NaCZt
(o] LKC £
§ ) ‘/
1520
—"_ “}NaBr
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13003 0.1 . 02 0.3 04 0.5

CONCENTRATION IN MOLES/LITER

SUBOW'S SEA WATER

SALT CONC.(MOLAR) Ac(VELOCITY INCREMENT)
NoGZ  0.4649 28.2
Mgso,  0.028I 3.4
MgCl,  0.0263 2.9 sypow's WATER
CaCe, 0.0105 .0.9 OBSERVED —— 1545.8m/s
KCe 0.0100 0.6 SAME,CALCULATED
NeHCO,  0.0025 0.2 BY SUMMATION = 1546.2m/s
NaBr 0.0008 0.0
Z =36.2

Fie. 3e-2. Effect of dissolved salts on sound velocity. (After Weissler and Del Grosso.)

The effect on absorption of dissolved solids frequently exhibits relaxation phe-
nomena. The absorption in sea water at frequencies above 1 Me is substantially that
in fresh water. Below 70 ke the observed value of « is about 10 times greater in sea
water. In the transition region from 70 to 1,000 ke, « is not proportional to f2 (see
Fig. 3e-3). This additional attenuation has been variously attributed to the high
concentration (and hence partial dissociation) of NaCl and to the presence of MgSO,.2

Figure 3e-3 indicates the observed values of absorption in sea water in the transition
range. .

Sound velocity and absorption in liquid mixtures exhibit two distinct types of
behavior. Mixtures of organic liquids tend to have values for ¢ and for a which vary
unidirectionally (not necessarily uniformly) with the relative proportions of the

1 Hall Phys. Rev. 18, 775 (1948).
2 Liebermann, J. Acoust. Soc. Am. 20, 868 1948).
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FREQUENCY IN CYCLES PER SECOND )
F1a. 3e-3. Sound absorption coefficients for sea water and fresh water. (After Liebermann.)
To convert to decibels per kiloyard, multiply 2« by 3.97 X 105.

TABLE 3e-2. VELOCITY UNDER 1,100 M/sBEc. LISTING IN ORDER OF
INCREASING VELOCITY '

Material Formula | Density Velocity, Temp., °C pc X 1070

' m/sec cgs

Ethyl bromide............ C:H;Br 1.428 892 28 1.27
Carbon tetrachloride....,.| CCl, 1.596 | 928.5 23 - 1.48
Bromoform.............. CHBr; 2.889 | 929 23.5 " 2.68
Butyl iodide (n).......... C.H,I 1.616 | 959 28 '1.55
Methylene bromide. . ..... CH.Br.; 2.453 971 24 - 2.38
" Methylene iodide......... CH.I. 3.323 977 24 3.25
Butyl chloride, ........... CH,Cl 0.84 985 25 0.83
Chloroform.............. CHCIl, 1.487. | 1,001 23.5 1.49
Acetyl tetrabromide. ......| C.H;Br, 2.962 | 1,007 28 2.98
Ethylene bromide......... C.H,Br, 2.178 1,014 24 2.21
Butyl bromide (n)........ CH,Br | 1.272 | 1,016 28 1.29
Acetylene dichloride....... C.H,Cl, | 1.262 | 1,025 25 1.29
Pentane................. CsHie 0.632 1,052 18 0.66
Allyl chloride............. C;H;Cl 0.937 | 1,088 28 1.02

liquids. Solutions of organic liquids in water tend to show peaks in both ¢ and « at
some concentration. The velocity peaks are typically 5 to 10 per cent higher than
that in either pure liquid, but the attenuation peak may show an increase of an order
of magnitude over that of the organic liquid.?

Gases in actual solution in water are generally reported to have negllglble effect on
sound velocity and absorption. ,

! Willard, J. Acoust. Soc. Am. 12, 438 (1941); Willis, J. Acoust. Soc. Am. 19, 242 (1947);
Burton, J. Acoust Soc. Am. 20, 186 (1948).



3-72 ACOUSTICS

TaBLE 3e-3. VELOCITY OVER 1,600 M/sEc. LiSTING IN ORDER OF

DECREASING VELOCITY

Material Formula | Density Velocity, Temp., °C pc X 1070
m/sec cgs
Glycerin................. C;H;0s 1.260 1,986 22 2.50
Ethylene glycol........... C:HO; 1.103 1,721 24 1.90
Aniline.................. CeH:N 1.018 1,682 24 1.71
Toluidine. .. ............. C:HoN 0.994 1,669 22.5 1.66
Quinoline. .. ............. C,H;N 1.090 1,643 22 1.79
Resorcin monomethyl ether| C;HzO2 1.145 1,629 26 1.86
Cyclohexanol.............| CsH120 0.946 1,622 23.5 1.53
Formamide.............. CH:NO 1.13 1,610 25 1.82

TaBLE 3e-4. SATURATED HYDROCARBONS AND ALCOHOLS; ACETATES

Material Formula Density Velocity, | pe X 107
m/sec cgs
A. Saturated Hydrocarbons
Pentane.......... C:sHi2 0.622 1,052 0.65
Hexane.......... CeHiy 0.658 1,113 0.73
Heptane. ......... CrHie 0.681 1,165 0.79
Octane...........| CsHis 0.702 1,238 0.87
B. Saturated Alcohols
Methyl........... CH;OH 0.792 1,130 0.89
Ethyl. C.H;0H 0.786 1,207 0.95
Propyl........... C:;H,0H 0.801 1,234 0.99
Butyl............ C.H,OH 0.808 1,315 1.06
Amyl............ CsH.,OH 0.813 1,347 1.09
C. Acetates

Methyl........... CH;COOCH; 0.928 1,211 1.12
Ethyl............ CH;COO0C:Hs 0.898 1,187 1.07
Propyl........... CH;CO0C;H; 0.891 1,182 1.05
Butyl............ CH;COO0C,H, 0.871 1,179 1.03
Amyl............ CH;COOC:Hu, 0.875 1,168 ©1.02

Gas bubbles in water are known to have a marked effect on both velocity and
absorption.! The effect of air mixed in the surface water at sea by virtue of “white
caps’’ has been found to persist after 48 hr of calm. Underwater sound measurements
in the laboratory may be affected for many days by the air released from solution in
tap water if not degassed.

3e-7. Acoustical Properties of Organic Liquids. The sound velocity in pure
organic liquids covers little more than a 2:1 range; the lowest reported is for ethyl
bromide (892 m/sec) and the highest is for glycerin (1,986 m /sec). With few excep-

1A. B. Wood, “A Textbook of Sound,” The Macmillan Company, New York, 1941;
D. T. Laird and P. M. Kendis, J. Acoust. Soc. Am. 24, 29 (1952).
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TABLE 3e-5. ABSOLUTE VALUES OF THE ABSORPTION CONSTANT FOR A NUMBER

oF OrcaNIic LiQuips.

LisTING IN ORDER OF DECREASING ABSORPTION
(Temperature between 23 and 27°C)

Madterial Formula :}}ioif tllgﬁ Density Vr(;k;:;t;y, pe >c<g;0 ?
Carbon disulfide. . . .. C8, 74 1.26 1,149 1.45
Glycerol............ C:Hs0s |26 1.26 | 1,986 '2.50
2 y 3-Butanediol ...... C4H1002 20 1.05
Benzene............ CeHs 8.3(9.15) 0.87 1,295(1,310) 1.13
Carbon tetrachloride.| CCl, 5.7 1.59 930(928) 1.48
Cyclohexanol........ CeH,20 5.0 0.96 1,622 1.56
Acetylene dichloride.| C.H,Cl, 4.0 1.26 1,025 1.29
Chloroform......... CHCl; 3.8(4.74) 1.49 995(1,001) 1.48
3-Methyl cyclohexa- '

nolresid.......... C;H1,0 3.5 0.92 1,400 1.29
t-Amyl alcohol. . . ... CsH 120 3.3 0.81 1,204 0.975
Mesityl oxide. . ... .. CeH 1,0 3.3 0.85 1,310 1.11
Bromoform......... CHBr; 2.3 2.89 908(929) 2.62
t-Butyl chloride. . . .. C.H,Cl 1.9 0.84 985 0.83
Chlorobenzene. . .. .. CeH;Cl 1.7 1.10 1,302 1.43
Turpentine. ........ 1.5 0.88 .| 1,255 1.10
Isopentane. .. ... v...| CsHia 1.5 0.62 985 0.61
d-Fenchone. ........ C10H160 1.4 | 0.94 1,320 1.24
Ethyl ether......... CH,,0 1.4(0.55) 0.71 985 0.70
Dioxane............ C.H;0; 1.3 1.03 1,380 1.42
Alkazene 13.........] CisHyy 1.3 0.86 1,310 1.13
Kerosene. .......... 1.1 0.81 1,315 1.06
Methyl acetate. .. ... Cs;H0, 1.09 0.93 1,211 1.13
Ethyl acetate....... CH;0. 1.1(0.77) 0.90 | 1,145(1,187) 1.03
Naphtha............ 1.0 0.76 1,225 0.93
Toluol..............| C:H; 0.9(0.85) 0.86 1,300(1,320) 1.12
Nitrobenzene. . . . ... CeH;NO; | 0.9 1.20 1,490 1.79
1, 3-Dichloro-isobu-

tane..............| C4H;Cl. 0.9 1.14 1,230 1.40
Nitromethane. . .. ... CH;NO. 0.9 1.13 1,335 1.51
Ethyl alcohol. . . . ... C.H:O 0.9 0.79 1,150 0.91
Methyl alcohol.. .. .. CH.O 0.9 0.79 1,105(1,130) 0.87
Acetonitrile. .. ... ... CH;CN 0.8 0.78 1,280(1,275) 1.00
m-Xylol............ CsHyo 0. 78(0 74) 0.86 1,325(1,328) 1.14
Acetone............ CsHsO0 0.64(0.32) | 0.79 | 1,170(1,203) | 0.925
Alkazene 25.........] C;(H«Cl:| 0.6 1.20 1,300 1.56
Formamide......... CH;NO 0.57 1.13 1,610 1.82
2, 5-Hexanedione. . . .| C¢H;002 0.50 0.96 1,400 1.34
Water (distilled). .. .| HO 0.33(0.25) 1.00 1,500(1,494) 1.50
Mercury............ Hg* 0.66 1,450

¥ Ring, Fitzgerald, and Hurdle, Phys. Rev., 72, 87 (1947).
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tions, the range is from 1,000 to 1,500 m /sec. (It is a matter of interest that mercury
also falls in this range, 1,450 m/sec.)

In contrast, the absorption constant «/f? varies over a wide range, about 300:1.
Numerically the highest reported absorption constant for a simple liquid is about one
order of magnitude lower than that for dry air. , ‘

The characteristic impedances of organic liquids pc are distributed over the range
from about 60,000 to 180,000 cgs units. Carbon tetrachloride with the pc value of
148,000  and sound velocity of 930 m/sec is well suited for acoustic lenses in water in
that the characteristic impedances are nearly matched and the velocity ratio is
reasonably high, about 62:100. -

The values of the properties of organic liquids reported from different sources are
seldom in agreement within experimental errors. The discrepancies are presumably
due to slight impurities; in the few cases in which mixtures have been investigated large
effects from small concentrations have been observed.

The liquids which have been selected for tabulation are:

1. Liquids having sound velocities outside the range 1,100 to 1,600 m /sec.

2. Liquids in certain chemical groups

3. Liquids for which absorption data have been reported :

The data for Tables 3e-2, 3e-3, and 3e-4 were taken from Bergman’s “Ultrasonics,”’
and for Table 3¢-3 from an article by Willard.! It will be noted that all the organic
liquids (except pentane) which have a sound velocity less than 1,100 m/sec are halogen
compounds. Table 3e-2 shows that there are consistent trends within each group but
inconsistent trends between groups.

In Table 3e-5 the absolute values of the absorption constant may be in error by a
factor of 1.5. The relative values for liquids having nearly like properties (a/f*and c)
should be correct within 10 per cent.

3f. Acoustic Properties of Solids

W. P. MASON

Bell Telephone Laboratories, Inc.

U

8f-1. Elastic Constants, Densities, Velocities, and Impedances. Solids are used
for conducting acoustic waves in such devices as delay lines useful for storing informa-
tion, and as resonating devices for controlling and selecting frequencies. Acoustic-
wave propagation in solids has been used to determine the elastic constants of single
crystals and polycrystalline materials. Changes in velocity with frequency and
changes in attenuation with frequency have been used to analyze various intergrain,
interdomain, and imperfection motions as discussed in Sec. 3f-2.

In an infinite isotropic solid and also in a finite solid for which the wave front is a
large number of wavelengths, plane and nearly plane longitudinal and shear waves can

1@, W. Willard, J. Acoust. Sec. Am. 12, 438 (1941).
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exist which have the velocities

Vlong = V)\ + 2“ Uehenr = V[Z: . (3f-1)

where p and A are the two Lamé elastic moduli, u Is the shearing modulus, and + 2u
has been called the plate modulus. For a rod whose diameter is a small fraction of a
wavelength, extensional and torsional waves can be propagated with velocities

Vext = XB Vtor = E
P o
where Yo =u ?%—;E%i‘) " (3£-2)

For anisotropic media, three waves w1ll in general, be propagated but it is only in
special cases that the particle motions will be normal and perpendicular to the direction
of propagation. The three velocities satisfy an equation!

A1 — pv2 Ay A3 : -
M2 N2z — pv2 A2s =0 (3f~3)
A1 a3 A3z — pvt

where p is the density, » the velocity, and the N’s are related to the elastic constants of
the crystal by the formulas - :

M1 = l2c11 + m2ces + nless + 2mncss + 2nleis + 2lmers

M2 = 1216 + Mm2cy6 + n2cas + mn(css + c25) + nl(cis + cse) + Im(ci2 + ces)

Ms = l%c15 + m2cis + nPcss + mn(ces + cas) + nl(crs + css) + Im(c1s 4 cse) (31-4)
A2z = lPegs + micas + ncss + mn(cas + cos) + nl(css + cas)lmicas + ca6)

N2z = lPces + micas + nPcus + 2mncay + 2nlcss + 2lmess

Asz = lcgs + mPcyq + nPcas + 2mncss + 2nlcss + 2lmeys

In these formulas ¢ to ces are the 21 elastic constants and I, m, n the direction
cosines of the direction of propagation with respect to the crystallographlc z, y, and z
axes which are related to the a, b, ¢ crystallographic axes as discussed in an IRE
publication.2

In Eq. (3f-3), we solve for the quantity pv2. It was shown by Christoffel? that the
direction cosines for the particle motion ¢, i.e., «, 8, v, are related to the A\ constants
and a solution of pv? by the equations

ali1 + Bhiz + YMs = apvi?  ahiz + Bhaz + YAas = Bovi? ahis + Bhas + YAsz = ypv;?
(31-5)

where ¢ = 1, 2, 3. Hence, solutxons of Eq. (3f-3) are related to particle motions by
the equations of (31-5).

Most metals crystallize in the cubic and hexagonal systems. Furthermore, when
a metal is produced by rolling, an alignment of grains occurs such that the rolling
direction is a unique axis. This type of symmetry, known as transverse isotropy,
results in the same set of constants as that for hexagonal symmetry. For cubic
crystals, the resulting elastic constants are

Ci1. = C23 = C33 €12 = C13 = Cg23 Ci4 = Cs55 = Css (3f‘6)

while for hexagonal symmetry or transverse isotropy, the resulting elastic constants
are ‘ ' '
: : Ci1 — Ci2
’ €11 = Cg2 C12 €13 = C3 €44 = Cs5 Cos = — 5 (3£-7)
! Love, ‘‘ Theory of Elasticity,” 4th ed., p. 298, Cambridge University Press, New York,

1934.
2 Standards on Piezoelectric Crystals, Proc. IRE 87 (12) 1378-1395 (December, 1949)
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For cubic symmetry, the waves transmitted along the [100] direction and the [110]
direction have purely longitudinal and shear components with the elastic-constant
values and particle direction £ given by
[100] direction

o Cus

Vlong = —p—- £ a,long [100] Ushear =

£ along any direction in the [100] plane
{110] direction

£ along [110]

Vlong

- ch + 612 + 2c44

U1 shear = Eﬁ & along [001] V9 shear = A\/cll — C12
4 ~ 20
£ along [110]

For hexagonal or transverse isotropy, waves transmitted along the unique axis and
any axis perpendicular to this will have the values
[001] direction

Viong = \/%’f ¢ along [001] Vehone = \| 24

£ along any direction in the [001] plane
[100] direction

c c
Viong = ,%! ‘£ along [100] V1 shear = _;é

£ along [001) V2 shear = '\/?Lz—‘—;il—2 £ along [010]

The fifth constant is measured by transmitting a wave 45 deg between the [100] and
[001] directions, i.e., I = n = 1/4/2; m = 0. For this case

_Cnr + Ca4 0

_ _ €13+ cu c1in — Ci2 + 2c4
A1z = Azz = — 5

2 Aoz = 4

(3£-8)

The three solutions of Eq. (3f-3) are

g _ C11_— C12 + 2¢44

pV1 1

pvs.g? = [(e11 + €33 + 2¢44) /2] + \/[écu — €33)/2]% + (€15 + C44)? (3£-9)

For these three velocities, the particle velocities have the direction cosines

FOI‘ vl, B = 1
_ cu — Cu —

For v, “T {2(613 + 044) T \/1 + [2(013 + 644)]} (3£-10)
= C33 — Cu1 (611 — cas) *?

‘For v *= {2(013 + c44) + \/1 + [2(013 + Cas) ]}

Hence; unless ¢, is nearly equal to css, a longitudinal or shear crystal will generate both
types of waves. Experimentally, however, it is found that a good discrimination can
be obtained against the type of wave that is not primarily generated and a single
velocity can be measured. A resonance technique ean also be used to evaluate all the
elastic constants of a crystalline material. '
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TaBLE 3f-1. DENsITIES OF GLASSES, PLASTICS, AND METALS IN
PoLYCRYSTALLINE AND CRYSTALLINE ForM (X-RAY DENSITIES
FOR CRYSTALS)*
Density,
Materials Composition Tilélp" kg/m;x 10¢
g/cm?3
Aluminum
Hard-drawn. ... ... ... . .. ... ... ... .. ... 20 2.695
Crystal........ ... .. ... . . ... 25 2.697
Aluminum and copper. .. .. 10 Al, 90 Cu 7.69
5 Al, 95 Cu 8.37
3 Al, 97 Cu .. 8.69
Berylium....... ... . ... ... ... ... .. 20 1.87
Crystal....... ... ... .| ... . ... . 18 1.871
Brass:
Yellow................ 70 Cu, 30 Zn 8.5-8.7
Red................... 90 Cu, 10 Zn 8.6
White................. 50 Cu, 50 Zn 8.2
Bronze.................. 90 Cu, 10 Sn 8.78
85 Cu, 15 Sn 8.89
80 Cu, 20 Sn 8.74
75 Cu, 25 Sn .. 8.83
Chromium...............0.. . ... .. . . ... ... 20 6.92-7.1
Crystal......... ... .0 .. . . 18 7.193
Cobalt........... ... . ... ..., 21 8.71
Crystal....... ... ... (. . ... . . . .. : 8.788
Constantine.............. 60 Cu, 40 Ni 8.88
Copper..... ... .. 8.3-8.93
Crystal. ... .. .. . 0. 18 8.936
Duralumin............... 17ST = 4 Cu, 0.5 Mg, 0.5 Mn 2.79
Germanium. . . . ... JR R .. 5.3
Crystal...... ... ... .\ . . .. 20 5.322
German silver. .. ....... .. 26.3 Cu, 36.6 Zn, 36.8 Ni 8.30
: 52 Cu, 26 Zn, 22 Ni 8.45
59 Cu, 30 Zn, 11 Ni 8.34
63 Cu, 30 Zn, 6 Ni 8.30
Gold........ ... .. 18.9-19.3
Crystal......... ... .. .| ... . . . . . . . 20 19.32
Indium. ......... ... 7.28
Crystal.......... ... .. . . .. . . . 7.31
Invar....................|63.8 Fe, 36 Ni, 0.20 C .. 8.0
Irom..... . ... 20 7.6-7.85
Crystal.......... ... .| . .. . 20 7.87
Lead...... ... b 20 11.36
Crystal....... ... . . .. .. . ... . . .. 18 11.34
Lead and tin. ... ... ... ... 87.5 Pb, 12.5 Sn 10.6
84 Pb, 16 Sn 10.33
72.8 Pb, 22.2 Sn 10.05
63.7 Pb, 36.3 Sn 9.43
46.7 Pb, 53.3 Sn 8.73
30.5 Pb, 69.5 Sn 8.24
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TasrE 3f-1. DENsITIES OF GLASSES, PLAsTICS, AND METALS IN
PoLYCRYSTALLINE AND CRYSTALLINE ForM (X-RAY DENSITIES

FOR CrystaLs) (Continued)

Density,
Materials Composition Teom P, | kg/m? X 107
C or
g/cm?
Magnesium. . ... .........f ittt .. 1.74
Crystal. ... ... .. .. . 25 1.748
MAaDZANEeSE. .. ... ..o et e C7.42
Crystal. ... .. .. . .. 7.517
MeTCUTY . ..ot e et e 20 13.546
Monel metal. ... ......... 71 Ni, 27 Cu, 2 Fe 8.90
Molybdenum.............0 . ..ot .. 10.1
Crystal....... ... ... .| o 25 10.19
Nickel. .. ... o .. 8.6-8.9
Crystal, ... .. . .. . 25 8.905
Phosphor bronze..........|79.7 Cu, 10 Sn, 9.5 Sb, 0.8 P . ‘8.8
Platinum. . .. .. ... . 20 21.37
Crystal....... .. ... . ... 18 21.62
SIlicon. .. ..o e 15 2.33
Crystal........ .. .. ... 25 2.332
Silver. ... .. B P . 10.4
Crystal.. ... ... .. . . | 25 10.49
347 stainless steel . ... . ... ... 7.91
Tin. .o 7-7.3
Crystal.......... .. i 7.3
TUDESEON. . . . oo . 18.6-19.1
Crystal........ .. ... ... i 25 19.2
ZANC. ... .. 7.04-7.18
Crystal.......... JR R P 25 7.18
Fused silica............ .. oo 2.2
Pyrex glass (702). . .......01 ... . 2.32
Heavy silicate flint. . ......| ....... ... .. ... ... ... ... 3.879
Light borate crown. .......| .. ... i 2.243
Lucite. ... ..o 1.182
Nylon 6-6. .. . ... o 1.11
Polyethylene. ............| oo, 0.90
Polystyrene. .. ........... i 1.056

* Sge also Tables 26-1 through 26-13.

When a longitudinal or shear wave is reflected at an angle from a plane surface, both
a longitudinal and a shear wave will in general be reflected from the surface, the angles
of reflection and refraction satisfying Snell’s law

sin § _ sin «
vs ]

(3£-11)

where « and g are the angles of incidence and refraction with respect to a normal to the
reflecting surface. Exceptions to this rule occur if a shear wave has its direction of
particle displacement parallel to the reflecting surface, in which case only a pure shear



ACOUSTIC PROPERTIES OF SOLIDS 3-79

wave is reflected, with the angle of reflection being equal to the angle of incidence.
Use is made of this result in constructing delay lines which can be contained in a small
volume. When the angle of incidence is 90 deg, the transmitted wave is refiected
without change of mode. If the transmitting medium is connected to another medium
with different properties, the transmission and reflection factors are determined by the
relative impedances of the two media. The impedance is given by the formula

Z=pv=+Ep (3£-12)

where E is the appropriate elastic stiffness and p the density. The reflection and
transmission coefficients between medium 1 and medium 2 are given by the equations

Zy, — Zs 27,

Z, + Z, A (3£-13)

R = T=1-R

Tables 3f-1 to 3f-4 list the densities, elastic constants, velocities, and impedances for
a number of materials used in acoustic-wave propagation.

3f-2. Attenuation Due to Thermal Effects, Relaxations, and Scattering. When
sound is propagated through a solid, it suffers a conversion of mechanical energy into
heat. While all the causes of conversion are not known, a number of them are, and
tables for these effects are given in this section.

3f-3. Loss Due to Heat Flow. When a sound wave is sent through a body, a com-
pression or rarefaction occurs which heats or cools the body. This heat causes thermal
expansions which alter slightly the elastic constants of the material. Since the com-
pressions and rarefactions occur very rapidly, there is not time for much heat to flow
and the elastic constants measured by sound propagation are the adiabatic constants.
For an isotropic material, the adiabatic constants are related to the isothermal con-
stants by the formulas!? '

9a2B?0 ® 2 9a2B20
= \0 o = .0 T = 9 -
AN =AY + C. u’ = pu Yoo = Yo + ()\ | ) C. (3f 14)

where the superscripts ¢ and ¢ indicate adiabatic and isothermal constants, « is the
linear temperature coefficient of expansion, B the bulk modulus (B = \ + 3p), O the
absolute temperature in degrees Kelvin, p the density, and C, the specific heat at con-
stant volume. Table 3f-5 shows these quantities for a number of materials.

The difference between A7 and A% should be taken account of when one compares the
elastic constants measured by ultrasonic means with those measured by static means.
From the data given in Table 3f-5, it is evident that this effect can produce errors as
high as 10 per cent in the case of zinc. Adiabatic elastic cqpstants are measured from
frequencies somewhat greater than those for which thermal equilibrium is established
during the cycle to a frequency! f = (poC?/27K) for which wave propagation again
takes place isothermally. This frequency is approximately 10!% cycles for most
metals.

When account is taken of the energy lost by heat flow between the hot and cool
parts, this adds an attenuation for longitudinal waves equal to

e — F0
A= 2;7;].72 [é-{ (E“_ETE—)] nepers,/m (3f-15)

where f is the frequency, v the velocity, K the heat conductivity, and E the appropriate
elastic constant for the mode of propagation considered. Since @ = B/2A4, it becomes

Q = pC02
~ 2fK[(E° — E®) /E®]

1'W. P. Mason, Piezoelectric Crystals and Their Application to Ultrasonies,” pp. 480
481, D. Van Nostrand Company, Inc., New York, 1950.

(3£-16)
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where Q is the ratio of 2x times the energy stored to energy dissipated per cycle and B
is the phase shift per unit length. Table 3f-5 shows the attenuation for a number of
solids due to thermal loss.

3f-4. Loss Due to Intergrain Heat Flow. A related thermal loss that occurs in
polycrystalline material is the thermoelastic relaxation loss whijch arises from heat flow
from grains that have received more compression or extension in the course of the wave
motion than do adjacent grains. The @ from this source has been shown to be!

1_Cp=Cop Jof (3£-17)

Q- C Tfe+r
where R is that fraction of the total strain energy which is associated with the fluctu-
ations of dilations, and f,, the relaxation frequency, is approximately

D K

fo = ch p(]ch2

(31-18)

where L, is the mean diameter of the crystallites and D the diffusion constant.
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F1q. 3f-1. Elastic constants and Q for single-crystal and polycrystal aluminum. (After Ké.)

For most materials, the relaxation frequencies are under 100 kc. Table 3{-6 gives
the product [(Cp — C,)/C,IR for a number of metals.

3f-5. Loss Due to Grain Rotation. Another source of loss due to grain structure in
metals is the loss due to the viscosity of the boundary layer between grains. This
allows a relative rotation of grains provided the relaxation time is comparable with the
time of the applied force. Figure 3f-1 shows the elastic modulus and the associated
Q of a polycrystalline aluminum rod in torsional vibration at a frequency of 0.8 cycle
as compared with similar measurements for a single crystal. The relaxation time for
grain-boundary rotation is a function of temperature according to the equation

r = 1oeH/kT (3£-19)

1 C. Zener, * Elasticity and Anelasticity of Metals,” p. 84, University of Chicago Press,
~ Chicago, 1948.
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where H, the activation energy, is of the same order as that found for creep and
self-diffusion.
3f-6. Loss Due to Grain Scattering of Sound. Another effect of grain structure in
solids is a loss of energy from the main wave due to the scattering of sound when the
sound wavelength is of the same order as the grain size. This scattering occurs
because adjacent grains have different orientations, and a reflection of sound occurs
because of the resulting impedance difference between grains. An approximate
formula! holding when the wavelength is larger than three times the grain size, and
multiple scattering is neglected, is

8r4L.3f*
9yt

a, = S nepers/m (3£-20)
where L. is the average grain diameter, f the frequency, » the velocity, and S a scatter-
ing factor related to the anisotropy of the metal. Table 3f-7 shows a relative estimate
of the scattering factors for longitudinal and shear waves for a number of metals.
For shorter wavelengths, the attenuation changes less rapidly with frequency,2 and for
wavelengths shorter than the grain size, the loss is independent of the frequency. A
formula applicable for all wavelengths is

a, = 2'20 %) (3f-21)

where Qs/ A is the ratio of the scattering area of the sphere to the actual cross-sectional
area. For low frequencies Qs/A = %2(xL./\)* = X2 (xL.f/v)* while for very high
frequencies Qs/A = 2. Intermediate values of cross-sectional areas can be obtained
from calculations given by Morse.? Because of elongations of grains in the direction of
rolling, most materials have different scattering areas for propagation along the rolling
axis and perpendicular to the axis.

8f-7. Acoustic Losses in Ferromagnetic and Ferroelectric Materials. Stresses in
ferromagnetic and ferroelectric materials can cause motion of domain walls or rotation
of domain directions. These occur in such a manner that domains are strengthened
in directions parallel, antiparallel, or perpendicular to the direction of the stress. The
increased polarization in the direction of the stress produces increased strains which
are the same sign in both parallel and antiparallel domains since magnetostriction and
electrostriction are square-law effects and hence the elastic stiffnesses.of demagnetized
materials are less than those of completely magnetized materials. For polarizations
directed along cube axes, the difference in elastic constants for the saturated and
depolarized states, i.e., the AE effect, is*

ég _ 9uN2E,
Ep  20xP;?

(3£-22)

where 4 is the initial permeability or dielectric constant, A\, the saturated change in
length along a polycrystalline rod, E, and Ep the saturated and demagnetized elastic-
stiffness constant and P, the saturated magnetic or electric polarization. When the
polarization lies along a cube diagonal—as in nickel—\, is replaced by 2\i111[5¢4s/
(c11 — €12 + 3cae)] where Ay is the saturated increase in length along the [111]
direction and 5cse/(c11 — c12 + 3cq4) is & ratio of elastic constants.

1 Mason, op. ctt., p. 422.

2 R. B. Roney, ‘“The Influence of Metal Grain Structure on the Attenuation of Ultra-
sonic Waves,” Thesis, California Institute of Technology, 1950.

3 Philip M. Morse, ‘‘ Vibration and Sound,” 2d ed., p. 355, McGraw-Hill Book Company,
Inc., New York, 1948.

4+ R. M. Bozorth, ‘“Ferromagnetism,” p. 691, D. Van Nostrand Company, Inc., New
York, 1951. ,



3-86 ACOUSTICS

The motion of walls or the rotation of domains in metallic ferromagnetic materials
generates eddy currents and hence causes an acoustic loss. It has been shown that the
permeability follows a relaxation equation

=i
I Mo 1 +f2/f02

where fo = 4R/25uoL?, R = resistivity, and L, = domain diameter. For a distribu-
tion of domain sizes

(éf -23)

b= Y o %—Ef—i’i/f,i (3£-24)

1=

where V; is the volume occupied by domains of size L; and V the total volume.
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Fia. 3f-2. Decrement and AE effect for polycrystal nickel rod as a function of frequency.
(After Bozorth, Mason, and McSkimin; Johnson rnd Rogers; and Levy and Truell.)

Inserting in Eq. (3f-22) the AE/Ep and @ are given by

AE _ 0N\2E, m ViV —1 B O\2E, (Vi/VF/F)
Ep ~ 20:P.? (Zl Tr ) QT e | TR ] e

Figure 3f-2 shows measurements of the AE effect and the decrement § = »/Q plotted
over a frequency range, for a polycrystalline nickel rod.

Another effect causing losses in ferromagnetic and ferroelectric materials is the
microhysteresis effect. In this effect the domain walls or domain rotations lag behind
the applied stress and produce a hysteresis loop. Hence the initial susceptibility has
a hysteresis component which is a function of the amount of stress. Average values
of the parameters can be written in the form

p = ol — jf(A)] (31-26)

where f(A) is a function of the amplitide. Inserting this value of u in Eq. (3f-22), the
value of the microhysteresis loss is given. This type of loss is present in ferroelectric
materials and is the principal cause of the low mechanical Q.
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3f-8. Other Types of Losses. In addition to these recognized types of losses, other
types exist which have not been accounted for quantitatively. Figure 3f-3 shows the
Q of a number of materials measured in a frequency range for strains under 10-5.1
Except for nickel and iron rods whose decrease in Q with frequency is accounted for by
-microeddy-current effects, the materials have a @ independent of frequency. It has
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Fra. 3f-3. Values of Y0/Q and x/Q as a function of frequency for a number of polycrystalline
materials. (After Wegel and Walther.)

been suggested that these losses are caused by elastic-hysteresis effects due to cyclic
displacements of dislocations in the body or grain boundaries of metals. Some
evidence? for this is shown in Fig. 3f-4, which shows the Q of a copper rod as a function
of temperature and degree of annealing. Losses in annealed specimens having smaller
numbers of dislocations are smaller than those in cold-worked specimens. At low

! R. L. Wegel and H. Walter, Physics 6, 141 (1935).
2 P. G. Bordoni, Assorbimento degli Ultrasuoni nei solidi, Nuovo cimento T (2), 144
- (1950).



3-88 ACOUSTICS

50 [ 10°
COPPER - G.P.
OXYGEN - FREE
40
i \| L
> I A \,r—-UNANNEALED

W
(o)
\
\‘
/
1
™

VALUE OF

N

o
—
—

\JA/-—ANNEALE[I)
|

| 1
10 / SINGLE CRYSTAL
\ [ —
oL
0 50 100 150 200 250 300

TEMPERATURE - °K
Fia. 3f-4. Attenuation peak in polycrystalline and single-crystal copper. (After Bordonat.)

30 ———=F
1/
n //
520 A= ANNEALED ]
= L/ 8= AFTER 70 PSI
ol E 7/ C=AFTER 100 PSI _|
> /1 D= AFTER 125 PSI
y /, E= AFTER 190 PSI _|
=S L~
w
2
@ D
O IO s ,‘
w L
o // rcl C
-——‘/ B/' '
A
0 v
o] 2 4 6 8 10x 1077

STRAIN AMPLITUDE
Fra. 3{-5. Decrement as a function of amplitude in a copper single crystal. (After Nowsick.)

temperatures, a relaxation of dislocation motions appears to occur. Other work!
shows that losses increase as a function of the amplitude, as shown by Fig. 3f-5.
These losses have an activation energy similar to that shown by Fig. 3f-4 and are in-
creased by cold work.

1 A. 8. Nowick, Phys. Rev. 80, 249 (1950).



3g. Properties of Transducer Materials

W. P. MASON

Bell Telephone Laboratories, Inc.

To determine the acoustic properties of gases, liquids, and solids and to utilize them
in acoustic systems, it is necessary to generate the appropriate waves by means of
transducer materials which convert electrical energy into mechanical energy and vice
versa. For liquids and solids, the most common types of materials are piezoelectric
crystals, ferroelectric materials of the barium titanate type, and magnetostrictive
materials.

8g-1. Piezoelectric Crystals. The static relations for a piezoelectric quartz crystal
producing a single longitudinal mode are for rationalized mks units

Sy = 828713 + dnnE, D, = duT: + «TE, (3g-1)

where S; and T', are the longitudinal strain and stress, respectively, s:2# the elastic
compliance along the length measured at constant electric field, d,: the piezoelectric
constant relating the strain with the applied field E;, D, the electric displacement,
and &7 the dielectric constant measured at constant stress. Equations of this type
suffice to determine the static and low-frequency behavior of piezoelectric crystals.
Using the first equation, one finds that the increase in length for no external stress and
the external force for no increase in length are, respectively,

Al = d21 Kl'; F = thw = _d2l K'L% (3g'2)

t S22
where V is the applied potential, I, w, and ¢ are the length, width, and thickness of the
crystal, and F is the force which is considered positive for an extensional stress. From
the second equation one finds that the open-circuit voltage and the short-circuited

charge for a given applied force are, respectively,

—_ d_‘“ Z_F_ Q:/;)l/;)wD,dldw=d2ll'—;l (3g-3)

V= el ) tw

Another important criterion for transducer use is the electromechanical-coupling
factor £ whose square is defined as the ratio of the energy stored in mechanical form
to the total input electrical energy. Using Eqs. (3g-1), this can be shown to be

2
k2 = _.d2_1 (3g-4)

822E6T

It is readily shown that the clamped dielectric constant S, obtained by setting
S; = 0, and the constant-displacement elastic compliance sP, obtained by setting
Ds = 0, are related to the constant-stress dielectric constant 7 and the constant-field
elastic compliance ss2# by the equations

S gD
= E=l-k (3g-5)

3-89
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Equivalent circuits in which the properties of the crystal are expressed in terms of
equivalent electrical elements are often useful (see Secs. 31 and 3m). An equivalent
circuit for a piezoelectric crystal for static conditions is shown by Fig. 3g-14. In this
network the compliance Ci = s22Fl/wt represents the compliance of the crystal with
the electrodes short-circuited, the capacitance C is the capacitance of the clamped
crystal, i.e., Co = lwe,5/t, while the transformer shown is a perfect transformer, i.e., a
transformer having no loss between zero frequency and the highest frequency for
which the piezoelectric effect is operative, having a turns ratio of ¢ to 1 where

w
g = —dn Py (3g-6)
The fact that this equivalent circuit presents the same information as Eq. (3g-1) is
readily verified by substitution and integration over the area of the crystal.

E ) / 3
Q:‘gz_”:l.; C|._.s22 B Cozs_s& ZO= w*VPYOE sy V= YTO
3 . T . .
S22 tw . [ Zo tan ‘é—'—g- 2\ .
d—fl v ——>€2
—¢, £ — ANN—4— A~
_LCl -j20
. sin wl
F "TO-'('; — F FooY @Tol <i F,
0
E
A B
—i 1To% M M —~§, —=i s Ma —¢

O

Co : Ft I_I_o%@= Ce M l_
| ] |

C D

8 . wit P .2 . Pltw | _ 8
c"s—z- C', Mg.—z—— CA-Tclt MAS__Z—— 4 CB__Z_ijt
-8
Mg= zle'

Fic. 3g-1. Equivalent circuit for a piezoelectric crystal for clamped and free conditions.

As an example of the use of such a network, one can calculate from it the efficiency
of transformation of mechanical to electrical energy, or vice versa, under various
conditions. Suppose that we clamp one end of the crystal and apply a force through
the sending-end mechanical resistance Ry and receive the power generated into an
electrical resistance Rz. Solving the network equations and obtaining the conditions
for maximum power output, it is readily shown that the maximum power is obtained

if

N

1 V1 =k
R = — R = — -

M wC1 V1 — k2 B wCo (3g 0

where & = 2r times the frequency f. With these values the power in the termination
is '

F2t

Py = 4¢°RE

(3g-8)
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The available power that can be obtained from a source having an open-circuit force ¥
with an internal impedance Ry is maximum when ¢?Rz = Ry. This power is then

2R F 3g-9
te*hvg = 1°Rg (3g-9)

and hence the power-conversion efficiency is
= f4 (3g-10)

Hence, unless the coupling is high, the efficiency of conversion by static means is low.

This efficiency can be improved by resonating the capacity Co by an electric coil
Lo at the frequency of operation and can be further improved by mechanically reso-
nating the static compliance of the crystal. The simplest way to analyze these
circuits for their optimum conditions is to observe that, if the perfect transformer is
moved to the end of the circuit, both equivalent sections are half sections of well-
known filters. Equation (3g-11) gives the element values of the first filter resonated
by an electrical coil, while Eq. (3g-14) gives the element values for the section tuned
on both ends.

C’ _ 822El dzl’w 2 _ ?11.) §2_12 _ fl +f2 _ 1
VU owt \s2f) & swF 2afifiZh  AxfiZe’
Slw fi f
Coy = = ; = 3g-11
ST T T o — )7, 2 — Fi0)Z, (3g-11)
Ly = $2=10Z, _ (2 — /)2,

2afifs  2afufs?

where f; is the lower cutoff, fz the upper cutoff, Z, the mid-shunt impedance occurring
on the electrical side, and Z; the mid-series impedance occurring on the mechanical
side. Solving for fi, fa, Zo, and Z;(¢?), i.e., the actual mechanical resistance, we find

1 ' V1 — k2 1 — ke

- =Y "8 g =Rp=-—F
o= o TaCo = A'LsCo 0T T 2nfiCo
_ _14++T1T—
R ® Z 27rf1(l822E/t’lU) (3g—12)

Hence, if there is no dissipation in the elements of the:crystal, perfect power conversion
can be obtained but only over a bandwidth of

ATl L NS gy (3g-13)
fa
The other section of Fig. 3g-2 is a wider bandpass filter having the element values
¢ lodt foh g _sl(atY S
1 i 822E 27rf1f2Zo 1 dzl 21r(f2 - fl)
. S —_
Co = Sw_ 1 Lo = (2 = f)Zo (3g-14)

¢ 2r(fa — f1)Zo
Solving for the bandwidth and the impedances
fo—fr _ k = VFif. = 1 = 1
I S Viem TNV Une T e Ve,
_ V1 —k? _ _ k 1 wi
Zy = Rg = 21rfmCok Ry = ¢*Z, = T Dufmin® 1

This ﬁlter section can efﬁclently transform mechanical into electrical energy and vice
versa with a loss determined only by the dissipation in the elements of the crystal.

2nf1f2

(3g-15)
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The simplest method for mechanically resonating the crystal is to use it near its
natural mechanical resonance. An exact equivalent circuit for a vibrating crystal is
shown by Fig. 3g-1B. Near the first resonant frequency, the equivalent circuit for a
clamped quarter-wave crystal is shown by Fig. 3g-1C while the equivalent circuit for a
half-wave crystal is shown by Fig. 3g-1D. When the half-wave crystal resonated by
a shunt coil is applied to converting electrical into mechanical energy, the same
formulas given in Eqgs. (3g-14) and (3g-15) and applicable except that k?/(1 — k?) is
replaced by (8/x%)[k2/(1 — k?)]. By using the complete representation of Fig. 3g-1B
the effect can be calculated by using various backing plates on the radiation from the
front surface. '

The general form of Eq. (3g-1) holds for any single mode whether it is longitudinal
or transverse as long as the appropriate constants are used. For longitudinal thick-
ness modes when the radiating surface is a number of wavelengths in diameter, sz2” is
replaced by 1/cu® and da by ex/cii®, the appropriate thickness piezoelectric con-
stant. For a thickness shear mode, the appropriate shear stiffness (ci, €55, OT Co6)

C o2 e @?
eTo1 1/C1° @TO | ]':'Q
|

r -
Lo X
Ry Co Ry Co] Ry Cc
-

Re Rg

=
0f

Q

F F F .
é
A B C

8 5

= e

2 =

Z 4

w w

e f = f

g 2 1

f, f2 f, f2
FREQUENCY FREQUENCY

Fic. 3g-3. Use of equivalent circuit in determining the optimum conditions for energy
transmission.

replaces 1/s2; and the appropriate shear piezoelectric constant replaces dz1. Table
3g-1 lists the constants in mks units for a number of standard crystal cuts.

8g-2. Electrostrictive and Magnetostrictive Materials. Other types of materials
that have been used in transducers are ferroelectric crystals and ceramics of the barium
titanate type and ferromagnetic crystals, polycrystals, and sintered materials of the
ferrite type. All these materials have changes in lengths proportional to squares
and even powers of the polarization and to obtain a linear response they have to be
polarized. These polarized materials have relations between stresses, strains, electric
and magnetic fields, and electric displacement and magnetic flux similar to those for a
piezoelectric crystals shown by Eq. (3g-1) and hence these materials can be said to
have “equivalent” constants which depend not only on the material but also on the
degree of poling and in some cases on aging effects. The dielectric and permeability
constants are those associated with the polarized medium as are also the elastic
constants.

To obtain these equivalent piezoelectric and piezomagnetic constants, one can start
with the more fundamental potential equations which have the same form for either
electrostrictive or magnetostrictive materials. For polycrystalline or sintered mate-
rials, these potential equations can be written in the form
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G* = —5lsuP(T1? + T2 + Ts?) + 2802(Th T2 + ThTs + ToTs)
+ 2(811D - 812D)(T42 + T52 + Tﬁz)] - {Qu(Dlle +:D22T2 + D32T3)
+ Q12[T1(D2? + D3?) + To(D1?2 + Ds?) + Ts(D1? + Ds?)]
+ 2(Qu — @12)(T'yD2D3 + TsD1Ds + TeD1 D)} + %511T(D12 + Dy? + D3?)
4+ KuT(Dy* + Dst + Ds*) + Ki13T(D12Dg? + D12Dy? + D2?Ds?)
+ KinT(D1® + Do + D3®) + KusT[D1#(D2? + Ds?) + D:z‘*(Dl2 + Ds?)
+ D3*(Dh? + D2?*)] + K" D12D22Ds? (3g-16)

where T:, T2 Ts are the three extensional stresses, Ty, T, T's the three shearing
stresses, D;, Di;, D; the three components of the electrical displacement for ferro-
electric materials or the three components of the magnetic flux B for ferromagnetic
materials, the s constants are the compliance constants for an isotropic material
measured at constant electric or magnetic displacement, the @’s are the electro-
strictive or magnetostrictive constants, 8117 the inverse of the initial dielectric constant
or permeability measured at constant stress, and the K7’s are constants determining
the total energy stored for higher polarizations. The static equations can be obtained
by differentiation of G according to the relations

G oG
aT; = 3p,

Since linear equations are obtained only if a permanent polarization P, is intro-
duced, we assume that

Si = — (3g-17)

D; = Py + Ds* ' (3g-18)

where D;* is a small variable component superposed on P,. Also, D, and D; are small
so that their squares and higher powers can be neglected compared with P,. Intro-
ducing these into (3g-16) and differentiating, we have

S1 = SuDTl + 812D(T2 + Tl) + QIZ(I)O2 + 2P0D3*)

Sz = suPlTs + 8122(T1 + T's5) + Q12(Po? + 2P0 D3*)

Ss = 811DT3 + 812D(T1 + T2) + Qu(P02 + 2P0D3*)

S¢ = 2(s112 — 8122) Ty + 2(Q11 — Q12)PoD:

S5 = 2(su? — $:122)T5 + 2(Qu — Q12)PoD: (3g-19)
Ss = 2(811D d 812D)T6

E, = —2(Q11 — Q12)PoTs + Di1(BuT + 2K,12TPo? + 2K 11.TP0*)

E; —2(Q11 — Q12)PoT ¢ + D2(B1iT + 2K 1:TPo? + 2K 1127 Po?)

Es = —2QuPoT3; — 2Q12Po(T1 + T2) + Ds*(Bu” + 12KuTP¢? + 30K11TPo*)

It is obvious that the variable components of Eq. (3g-19) follow the same rule as for
a piezoelectric crystal. There are three longitudinal modes and a shearing mode.
~ The length longitudinal mode has the following constants:

40Q,52Po? ] 2Q 2Po
E — =
L.L. mode suf = su? [1 T 55T (Po)sis® W = TPy

essT (Po) =

1
By (3520

where B83:T(Po) = (BT + 12K117P¢? + 30K 111TP¢*) is the dielectric impermeability
of the ceramic when it has a permanent polarization P,

M] doy = 2Q11P0
BasT (Po)s1,? 7 BasT (Po)

e (Po) =

L.T. bar SuE = 811D [1 +

1
———  (3g-21
Brpy (382

* If higher-order terms than those considered here are used, second-order electrostrictive
and magnetostrmtlve terms and the change in elastic constants with polarization can be
taken care of. ' For example, see W. P. Mason, Phys. Rev. 82 (5), 715-723 (June 1, 1951).
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These formulas hold for a bar which is long in the direction of vibration compared with
the cross-sectional dimensions. When a plate is used which is a number of wave-
lengths across, the sidewise motions §; and S: are zero and the constants are

L.T. plate ot d3s e23(Po) (3g-22)
where
1 1 25127 ,
C]__TE = 6;}; + d;§5;3(P0) d;3 = 2P0 (Qll - m le) 633(P0)
’ 1
T — , b
€33 (Po) Bs:T (Po) + [4Q122P o2/ (5112 + s12P)] and c11

_ suP + si2?
(811D - 812D)(811D + 2s5140)

The thickness shear mode has the fundamental constants 2(s11# — $127); dis; €117 (Po),

1,32 X100
/.’I’._—.-.-.."I\l\.\
/ ]

1.28 -/' T__ X_X.L—&::m:x,;x‘)(\! T\-\.
N ” X‘X_x__h‘l
S :
m
w124
[%2]

P4

O

= 1.20

2

w
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i.e., the dielectric constant perpendicular to the poling direction, where

_ 2(Q11 — Q12)Po 4(Q11 — Q12)2P?
e11” (Po) B117 (Po)

d14 2(811E - Sle) = 2(811D bl 812D) -1—

1
BT 4 2K13:TP¢? + 2K,12TP%)

en?(Po) = (3g-23)

Two other modes have been used in electrostrictive and magnetostrictive materials,
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the radial mode and the torsional mode. The first is driven by polarizing the disk
perpendicular to the major surface and involves the same fundamental constants as the
length longitudinal mode of Eq. (3g-20). It has been shown! that the effective
coupling and the resonant frequency of such disks are given by the equations

(4Q112Po2eT(Po)) _203 [ 1

2
k e =35 sufo(l — a?)

(3g-24)

l—a'

where o is Poisson’s ratio which is approximately 0.3 for barium titanate ceramics.
The torsional mode is generated in electrostrictive and magnetostrictive materials
when the alternating displacement is at right angles to the polarization. This is
easily accomplished for a magnetostrictive material by polarizing a cylinder radially
by one set of windings and driving the cylinder by a set of windings coaxial with the
cylinder. In an electrostrictive material, a torsional vibration can be obtained by
inducing a permanent polarization in different directions on two sides of the cylinder
and driving the cylinder by a set of two electrodes with the two gaps between them
coming in the region of greatest permanent polarization. The fundamental elastic
constant is the shear constant (ssf = s5:%) while the fundamental piezoelectric con-
stant is the shear piezoelectric constant dys or the similar magnetostrictive constants.
Table 3g-2 gives some typical constants for a number of barium titanate composi-
tions with lead and calcium titanate additions. Figure 3g-3 shows how the funda-
mental constants vary with temperature over a wide temperature range. Table
3g-3 gives some typical constants for a number of magnetostrictive materials.
8g-3. Equivalent Circuits for Magnetostrictive Transducers. The energy equation
(3g-16) is the same for magnetostrictive and electrostrictive materials, provided the
electric field and displacement are replaced by the magnetic field H and the magnetic
flux density B. Hence the equivalent circuit of Fig. 3g-1 also applies to a magneto-

l
strictive material, provided we replace E and ¢ by _/0 H;dl = U, the magnetomotive

force and BS = & where S is the cross-sectional area, & the total flux through the
magnetostrictive transducer, and & the time rate of change of this flux. Hence all
the fundamental quantities and coupling factors can be expressed in terms of the
analogous quantities as shown by Table 3g-3. These hold for materials having a
closed magnetic circuit such as a ring or a rod with closing magnetic circuit havmg a
reluctance small compared with that for the rod. If this is not true, demagnetizing
factors and additional reluctance values have to be taken account of and the value of
& is the average value determined by all these factors.

In a transducer, however, it is not U and & that we deal with, but rather the input
voltage and current. These quantities are related by equations of the type

E = N dt U=N: (3g-25)
where N is the number of turns and the voltage, current, flux, and magnetdmotive
forces are directed as shown by Fig. 3g-4. These are the equations of a gyrator, shown
by the symbol of Fig. 3g-4, which does not satisfy the reciprocity relationship. If we
call Zy the magnetic impedance defined by

U
Zy = /@t (3g-26)
it is evident that the electrical impedance at the terminals of the transducer is equal to
E _N?
Zg = =7 (3g-27)

1

1'W. P. Mason, “ Piezoelectric Crystals and Their Application to Ultrasonics,” chap.

XII, D. Van Nostrand Company, Inc., New York, 1950.
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Hence the effect of the gyrator coupling is to invert all the elements of the equivalent
circuit. Hence one should determine the element values of Fig. 3g-4 for the appro-
priate terminating conditions and then invert the values in accordance with Eq.
(3g-27) to determine the elements of a magnetostrictive transducer. The values

—’éz
-
—i NTO! —& 170y AAA },Zo,ongi
T LA T L4 = F
E ) C u G sined —&4
| 1 :
1

s daxa 7"
L H H 337% S
Coz— » Z20=S\PY y v\ I A B
S P

Fia. 3g-4. Equivalent circuit of a magnetostrictive rod.

given in Fig. 3g-4 are for a longitudinally vibrating rod where 8 is the cross-sectional
area and [ the length. uS is the average value of the permeability in the equations for

the reluctance R
l
R = 58 (3g-28)

where 5 is for the constant stress condition.

3h. Frequencies of Simple Vibrators. Musical Scales

ROBERT W. YOUNG

U.8. Navy Electronics Laboratory

8h-1. Strings. The fundamental frequency of vibration of an ideal string is

1 JF
= = \[= h-1
Jo 21 Vm (3h-1)
where f, is the frequency, [ is the free length, F is the force (tension) stretching the
string, and m is the mass per unit length. Values of m for steel and gut strings are

given in Table 3h-1. ]
In addition to the vibration in a single loop which gives rise to the fundamental

frequency, the ideal string may vibrate in harmonics whose frequencies are
fn = nfo . (3h-2)
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TaBLE 3h-1. Mass pER UniT LENGTH oF STEEL AND GUT STRINGS*

Diam Steel, | Gut, Diam Steel, | Gut, Diam Steel, | Gut,
mm in. g/m | g/m mm | in, g/m | g/m mm | in. g/m g/m
0.20(0.0079{ 0.25 | 0.04 | 1.00|0.0394| 6.15| 1.10 | 1.80/0.0709| 19.9 | 3.56
0.2210.0087( 0.30 | 0.05 | 1.020.0402] 6.40| 1.14 {1.8210.0717| 20.4 | 3.64
0.2410.0094{ 0.35 | 0.06 | 1.04/0.0409| 6.65| 1.19 |1.84(0.0724| 20.8 | 3.72
0.26 10.0102| 0.42 | 0.07 |1.06(0.0417| 6.91| 1.24 | 1.86]0.0732| 21.3 | 3.80
0.28 10.0110{ 0.48 [ 0.09 [ 1.08(0.0425 7.17| 1.28 |1.88(0.0740| 21.7 | 3 88
0.30(0.0118/ 0.55 | 0.10 | 1.10]0.0433| 7.44| 1.33 |1.90(0.0748| 22.2 | 3.97
0.3210.0126{ 0.63 | 0.11 §1.120.0441 7.71| 1.38 [ 1.92/0.0756| 22.7 | 4.05
0.3410.0134/ 0.71 | 0.13 1.14(|0.0449] 7.99| 1.43 [1.9410.0764| 23.1 | 4.14
0.36 (0.0142| 0.80 | 0.14 §1.16]0.0457| 8.27| 1.48 | 1.96(0.0772| 23.6 | 4.22
0.38 10.0150{ 0.89 | 0.16 | 1.180.0465| 8.56| 1.53 |1.98/0.0780| 24.1 | 4.31
0.40(0.0157, 0.98 | 0.18 | 1.20/0.0472| 8.86| 1.58 [2.00!0.0787| 24.6 | 4.40
0.42 0.0165| 1.08 | 0.19 | 1.22)|0.0480| 9.15| 1.64 [2.02(0.0795| 25.1 | 4.49
0.4410.0173/ 1.19 | 0.21 |1.24/0.0488] 9.46| 1.69 |2.04(0.0803| 25.6 | 4.58
0.46 10.0181| 1.30 | 0.23 |1.26(0.0496| 9.76| 1.75 |2.06(0.0811| 26.1 | 4.67
0.48 10.0189| 1.42 | 0.25 | 1.28|0.0504/ 10.1 | 1.80 | 2.08[0.0819| 26.6 | 4.76
0.50 (0.0197| 1.54 | 0.27 [ 1.30(0.0512{10.4 | 1.86 {2.10(0.0827| 27.1 | 4.85
0.5210.0205/ 1.66 | 0.30 |1.32]0.0520/10.7 | 1.92 |2.12(0.0835| 27.6 | 4.94
0.5410.0213/ 1.79 | 0.32 |1.34(0.0528{11.1 | 1.97 |2.14(0.0843| 28.2 | 5.04
0.56 |0.0220( 1.93 | 0.34 |1.36(0.0535/11.4 | 2.03 |2.16|0.0850| 28.7 5.13
0.58 /0.0228/ 2.07 | 0.37 11.38/0.0543|11.7 | 2.09 [ 2.18{0.0858| 29 2 5.23
0.6010.0236( 2.21 | 0.40 | 1.40(0.0551|12.1 | 2.16 {2.20|0.0866| 29.8 5.32
0.6210.0244( 2.36 | 0.42 {1.42(0.055912.4 | 2.22 |2.22(0.0874] 30.3 | 5.42
0.64 10.0252| 2.52 | 0.45 | 1.44(0.0567|12.8 | 2.28 | 2.24|0.0882| 30.9 5.52
0.66 [0.0260{ 2.68 | 0.48 | 1.46[0.0575/13.1 | 2.34 [ 2.26|0.0890| 31.4 5.62
0.68 10.0268| 2.84 | 0.51 |1.48(0.0583|13.5 | 2.41 {2.28(0.0898| 32.0 | 5.72
0.7010.0276{ 3.01 | 0.54 |{1.50(0.0591/13.8 | 2.47 }2.30/0.0906| 32.5 | 5.82
0.7210.0283| 3.19 | 0.57 | 1.52(0.0598|14.2 | 2.54 {2.32(0.0913| 33.1 5.92
0.7410.0291f 3.37 | 0.60 |1.54(0.0606| 14.6 | 2.61 |2.34(0.0921| 33.7 | 6.02
0.76 10.0299( 3.55 | 0.64 | 1.56{0.0614/15.0 | 2.68 [ 2.36|0.0929 34.3 | 6.12
0.78 10.0307| 3.74 | 0.67 |1.58(0.0622|15.4 | 2.74 [2.38(0.0937| 34.8 | 6.23
0.8010.0315/ 3.94 | 0.70 | 1.60(0.0630| 15.7 | 2.81 | 2.40!0.0945 35.4 | 6.33
0.820.0323| 4.14 | 0.74 {1.62(0.0638/16.1 | 2.89 | 2.42(0.0953| 36-.0 6.44
0.84(0.0331{ 4.34 | 0.78 | 1.64]0.0646{ 16.5 | 2.96 | 2.44|0.0961| 36.6 6.55
0.86 (0.0339| 4.55 | 0.81 | 1.66(0.0654/16.9 | 3.03 |2.46/0.0968| 37.2 | 6.65
0.8810.0346| 4.76 | 0.85 | 1.68/0.0661|17.4 | 3.10 {2.48)0.0976| 37.8 6.76
0.90|0.0354 4.98 | 0.89 11.70(0.0669|17.8 | 3.18 | 2.50|0.0984| 38.4 6.87
0.9210.0362| 5.20 | 0.93 |1.72(0.0677/18.2 | 3.25 | 2.52/|0.0992| 39 .1 6.98
0.94 10.0370{ 5.43 | 0.97 |1.74|0.0685/ 18.6 | 3.33 |2.5410.1000| 39.7 | 7.09
0.96 10.0378| 5.67 | 1.01 |1.76(0.0693/ 19.0 | 3.41 {2.56/0.1008| 40.3 | 7.21
0.98 (0.0386] 5.91 | 1.06 | 1.78]0.0701|19.5 | 3.48 | 2.58|0.1016| 40.9 | 7.32

* This table is based on a density of steel of 7.83 g/cm®. Density of gut is assumed to be 1.4 g/cm?,
about one-sixth that of steel. This is only approximate, since the density of gut varies from sample to
sample, and increases markedly with humidity. Brass wire has a density of 8.7 g/cm3, about 1.1 times
that of steel.
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where 7 is the integer denoting the particular mode of vibration. The length of each
vibration loop is I/n. These successive lengths and the corresponding periods of
vibration (i.e., the reciprocals of the frequencies) constitute a harmonic series accord-
ing to the strict mathematical definition; nowadays, however, the frequencies them-
selves are usually said to make up a harmonic series.

The frequencies of actual strings depart somewhat from the frequencies computed
from the simple formula because actual strings are stiff, they may be partially clamped
at the ends, they are not infinitely thin, the tension increases with amplitude of vibra-
tion, the mass per unit length is not exactly uniform, there is internal damping and
damping due to the surrounding air and supports, and the supports are not infinitely
rigid. In the formulas which follow damping has been neglected.

For an actual string set

f=nfel +& | (3h-3)

where the factor (1 + @) is a measure of the departure (i.e., the inharmonicity) from
the ideal harmonic values. Table 3h-2 lists values of G for various small perturbations.
The approximations are valid only when @G is small.

TasLE 3h-2. PERTURBATION IN FREQUENCY OF A STRING

Cause q Explanation
i n2r3dtY : Y is Young’s modulus, d is the diam-
Stiffness 12812F eter of the string
The support consists of a mass M on a
Yielding support 4ml spring of transverse force constant K.
4r2n2M — K /fo? Multiply by 2 if there are two such
supports

The mass per unit length is m =
mo[l + g(x)] where mo is the mean
(rnx) dz value over the string and z is the dis-
l tance from one end of the string; the
function g(z) must be small in com-
parison with unity

l
Variable density | — ll [O g(x) sin?

For musical purposes it is often convenient to give the inharmeonicity in cents
(hundredths of an equally tempered semitone) by setting

1 4+ G = 28/1.200 = gb/1,731 ‘ | (3h-4)

where & is the inharmonicity. To a usually acceptable approximation, § = 1,731G.

If the stiff string listed in Table 3h-2 is of steel music wire, Y/p = 25.5 X 10¢
m?/sec?, ¥ being Young’s modulus and p the density. The tension is very nearly
F = I2pfo?rd?. Thus for steel wire, and by virtue of the stiffness formula, the inhar-
monicity in cents is 8 = 3.4 X 1013d?/f¢?l¢, provided that the diameter and length are
in centimeters.

8h-2. Air Columns and Rods. The air within a simple tube of constant.cross section,
open at both ends or closed at both ends, vibrates freely at a frequency near

ne ;
f=g5 (3h-5)
where n is an integer (mode of vibration number), ¢ is the speed of sound in the con-

tained air, and [ is the length of the tube (see Sec. 3d for speed of sound in air and its
dependence on temperature). The diameter of the tube must be relatively small;
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plane sound waves propagated longitudinally are assumed. - The same formula applies
to thin rods vibrating longitudinally and suitably supported (say, at distances
1/2n from the ends) so that the vibration is not inhibited (see Sec. 3f for speed of sound
in solids).

Open organ pipe is an example of a doubly open tube of constant cross section. To
calculate its frequency adequately it must be recognized, however, that the air beyond
the physical ends of the tube partakes of the vibration and adds inertia to the vibrating
gystem. (This does not mean, however, that there is a velocity antinode beyond the
end of the tube.) The necessary corrections to the simple formula are usually intro-
duced as empirical ‘“‘end corrections’ to be added to the geometrical length; thus

nce

f= 200 + z1 + z9)

where z; = 0.3d is the correction for the unimpeded end (d being the inside diameter
of the pipe) and z; = 1.4d is the correction for the mouth of the pipe. These are rough
approximations; the literature on the end correction is extensive.!

The air inside a cylindrical tube that is closed at one’end and open at the other
vibrates at frequency

(3h-6)

nc

F=w+»

where 2 = x; if the open end is unimpeded. In the case of the ‘“closed” organ pipe
(meaning closed at one end only), £ = z..

The air in a conical tube is resonant in some cases at the same frequencies as a
doubly open cylindrical tube of the same length, but there is the important difference
that the contained sound waves are spherical rather than plane. Table 3h-3 gives
equations? to be solved for each combination of end conditions; k¥ = 2xf/c. ‘‘Closed-
open,” for example, means that the smaller end of the truncated cone is closed while
the larger end is open; r; is the slant distance from the extrapolated apex of the cone
to the smaller end and r; is the slant distance to the larger end. The slant length of
the resonator is thus r, — r1. When r; = 0, the length is r; and the cone is complete
to the apex. Formulas for computing frequency when the cone is complete are shown
at the right of Table 3h-3. As in the case of cylindrical tubes, the length should be

(3h-7)

TaBLE 3h-3. FREQUENCIES OF CONICAL RESONATORS

Ends Equation Forr; =0
Closed-closed krs — tan=! kre = kry — tan™! kry tan kro = kre
Closed-open tan k(rs — 1) = —krs fi= En_rz
Open-closed tan k(r: — r1) = kre tan kry = kry

: ‘ ne ne
Open-open f= 3rs —70) f= 2rs

slightly modified by end corrections. As the angle of the cone increases the correction
decreases and may even become negative.?

3h-3. Volume Resonators. The Helmholtz resonator consists of a nearly closed
cavity of volume V with an opening of acoustical conductance C. If the opening is

1 E., G. Richardson, ed., *“ The Technical Aspects of Sound,” vol. I, pp. 493-496, 578,
Elsevier Publishing Company, Amsterdam, 1953; Harold Levine, J. Acoust. Soc. Am. 26,
200—211 (1954).

"2 Bric J. Irons, Phil. Mag. 9, 346-360 (1930).

3 A. E. Bate and E. T. Wllson, Phil. Mag. 26, 752— 757 (1938).
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in a thin wall the conductance is simply d, the diameter of the hole. If the opening is
through a short neck of length [, approximately

wd?

¢= 40 + 0.8d)

(3h-8)

The natural frequency of the resonantor is
¢c .[C
f=2 \/Tf (8-9)

the velocity of sound in the opening being c. The equation 1s valid for wavelengths
large in comparison with the dimensions of the resonator.

The ocarina may be recognized as an instrument of the resonator type because the
position of an open hole of given size is immaterial; when the holes are all equal they
may be opened in any order to give the same scale. The total conductance for use
in the formula given above is the sum of the conductance of individual holes, provided
that they are separated far enough that there is no interaction.

3h-4. Bars. A long thin bar clamped and/or free at the end(s) can vibrate trans-
versely at the fundamental frequencies listed in Table 3h-4 under mode 1. The length
of the bar is [, Y is Young’s modulus, p is the density, and « is the radius of gyration
about the neutral axis of the cross section. For a round bar « = d/4, where d is the
diameter. For a flat bar of thickness ¢ (in the plane of vibration) x = ¢/4/12; the
width is immaterial. The frequency of a bar clamped at both ends is the same as
that of a bar free at both ends. The frequency of a higher mode of vibration can be
found by multiplying the fundamental frequency by the ratio indicated in Table 3h-4;

TaBLE 3h-4. FREQUENCIES OF TRANSVERSE VIBRATION OF BARs

Frequency Ratio Cents
Ends
Mode — 1 2 3 4 2 3 4
Clamped-free s = 2220 \/‘ 6.267|17.548(34.3873,177|4,9606, 124
Free-free, or 3.561« 561:: \/Y
clamped-clamped = 2.756| 5.404| 8.933|1,755|2,921|3,791

the intervals in cents corresponding to these ratios are given at the extreme right of the
table. These are the classic! values for thin bars; the frequencies of actual bars are
lowered slightly as a consequence of rotatory inertia, lateral inertia, and shear.? For
example, for a steel bar whose length is 40 times the thickness, the frequencies of the
first four modes of vibration are expected to be 0.997, 0.992, 0.984, and 0.974 times the
corresponding “thin’’ values (i.e., lowered 5, 14, 28, and 46 cents, respectively).

The simple tuning fork may be recognized as an example of dual clamped-free bars.
The frequency of a tuning fork made of ordinary steel may be computed approximately

from
80, OOOt

f= (3h-10)

1 Lord Rayleigh, ““ Theory of Sound,” vol. I, p. 280, Macmillan & Co., Ltd., London, 1894.
The interval erroneously given as 2.4359 octaves has been corrected here to 2.4340 octaves
= 2,921 cents.

2 William T. Thomson, J. Acoust. Soc. Am. 11, 199-204 (1939). There is an error:
m = B/[1 + B2(k/L)?k, not m = B/[1 + B2(k/L)*}.
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TaBLE 3h-5. FREQUENCIES OF THE EQuALLY TEMPERED SCALE, BASED ON THE
INTERNATIONAL STANDARD A = 440 cps

Note | S f 2xf | Note | S f 2rf Note | S f 2xf
Co 0| 16.352(102.74) Cs 36 |130.81| 821.92] C, 72|1,046.5| 6,575.4
1| 17.324|102.74 37(138.59| - 870.79 73|1,108.7| 6,966 .4
Dy 2| 18.354(115.32f D; |38(146.83| 922.58] D¢ | 74|1,174.7| 7,380.6
3| 19.445(122.18 39(155.56| 977.43 75(1,244.5| 7,819.5
Eo 4| 20.602(120.44] E; |40(164.81(1,035.6 | Ee¢ | 76]1,318.5| 8,284 .4
Fo 5| 21.827(137 .14} F; |41(174.61{1,097.1 § Fs 77|1,396.9( 8,777.1
6| 23.125|145.30 42 /185.00{1,162.4 78|1,480.0| 9,299.0
Go 71 24.500(153.93] Gs; |43(196.00{1,231.5 | Gs | 79(1,568.0| 9,851.9
8| 25.957(163.09 441207 .65(1,304.7 80|1,661.2|10,438
A, 9| 27.500{172.59] A; |45|220.00/1,382.3 | As | 81/1,760.0/11,058
10| 29.135{183.06 46 |233.08|1,464.5 82|1,864.7|11,716
Bo |11| 30.868|193.95] B, |47(246.94{1,551.6 | Bs | 83[1,975.5/12,413
C: |12 32.703|205.48] C, |[48|261.63|1,643.8 | C; 84/2,093.0(13,151
13| 34.648217.70} 49 277 .18|1,741.6 852,217 .5(13,933
D; |14| 36.708[230.64] D, |50(293.66(1,845.2 | D; | 86/2,349.3|14,761
15| 38.891|244.36 51311.13|1,954.9 87|2,489.0(15,639
E:, |16| 41.203[258.89] E, |52(329.63/2,071.1 | E 88/2,637.0(16,569
Fi | 17| 43.654]274.28f F, |53[349.23/2,194.3 | F- 89|2,793.8(17,554
18 46.249290.591 541369.99(2,324.7 90|2,960.0/18,598
G; |19] 48.999|307.87] G, |55(392.00(2,463.0 | Gz | 913,136.0/19,704
20| 51.913(326.18 56 {415.30(2,609 .4 92(3,322.4/20.875
A, |21| 55.000(345.58] A, |57 |(440.002,764.6 | A 93|3,520.0122,117
22| 58.270{366.12 58 [466.16|2,929.0 94(3,729.3|23,432
B, 23] 61.735(387.90§ B, |59 |493.883,103.2 | By 95(3,951.1(24,825
C: |24]| 65.406(410.96] C; |60(523.2513,287.7 | Cs 96(4,186.0{26,301
25| 69.296|435.40 61 (554.37|3,483 .2 : 9714,434.9\27,865
D, |26| 73.416/461.29] D;s |62 (587.33/3,690.3 | Ds | 98/4,698.6129,522
27| 77.782[488.72 63 |622.25|3,909.7 994,978.0/31,278
E, |28 82.407517.78] E; |64/659.26(4,142.2 | Eg [100(5,274.0(33,138
F, |29 87.307|548.57| F5s |65698.46/4,388.5 | Fs [101]5,587.7(35,108
30| 92.499581.19] 66 (739.99{4,649.5 102|5,919.9|37,196
G |31] 97.999(615.74) G; |67783.99(4,926.0 | Gs [103|6,271.939,408
32 (103 .83 [652.36 68 |830.61(5,218.9 104/6,644.9|41,751
A, |33]110.00 [691.15} A; |69 |880.00[5,529.2 | As |105(7,040.0/44,234
34 (116.54 |732.25 70 (932.33|5,858.0 106{7,458 .6{46 ,864
B, |35(123.47 775.79! B; |71(987.7716,206.3 | Bs (107|7,902.1(49,651

Numerous subscript notations have been employed to distinguish the notes of one octave from those
of another. The particular scheme used here assigns to Co a frequency which corresponds roughly to
the lowest pitch. 8 is the number of semitones counted from this Co.
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provided that the thickness ¢ and length [ of the prongs are given in centimeters.

It is evident from Table 3h-4 that the different modes of vibration of a uniform bar
are inharmonic. However, the cross section of the bar in the modern xylophone or
marimba is often given an empirical lengthwise “undulation’’ such that the second
mode of vibration of the free-free bar is changed in frequency to 3 or 4 times the funda-
mental frequency.! The frequencies of the higher modes of vibration are also modified

TABLE 3h-6. INTERVALS IN CENTS CORRESPONDING TO CERTAIN
FRrREQUENCY RaTiOS

Name of interval Frequency ratio Cents
Unison. ... ... » 1:1 0
Minor second or semitone............... Do 1.059463:1 100
Semitone............ ... .. ... . . 16:15 111.731
Minor tone or lesser whole tone. .. ............... 10:9 182.404
Major second or whole tone. .. .................. 1.122462:1 200
Major tone or greater whole tone. ................. 9:8 203.910
Minor third. ... ... ... ... ... ... ... ... ... .. 1.189207:1 300
Minor third. . ...... ... ... ... .. . .. .. ... .. 6:5 315.641
Major third. .. ...... ... ... .. .. .. ... .. ... 5:4 386.314
Major third. ........ . ... ... . ... 1.259921:1 400
Perfect fourth............. . ... ... ... ... ... .... 4:3 498 .045
Perfect fourth.......................... R, 1.334840:1 500
Augmented fourth.......... ... .. ... ... ...... 45:32 590.224
Augmented fourth...... ......... .. ... ... ..... . 1.414214:1 600
Diminished fifth. ......... ... ... ... ........ ... 1.414214:1 600
Diminished fifth......... . .. ... ... ... ........ 64:45 609.777
Perfect fifth. . ... ... ... .. ... ... .. ... . .. . .. .. 1.498307:1 700
Perfect ifth............ ... ... ... ... ... ... . 3:2 701.955
Minor sixth............. .. ... ... ... .. ... 1.587401:1. 800
Minorsixth........... ... ... ... ... ... ... .. ..... v 8:5 813.687
Major sixth........... ... . ... ... ... ... ... .... 5:3 884 .359
Majorsixth. ........... .. .. .. .. .. ... ... ...... 1.681793:1 900
Harmonic minor seventh. ... .................... 7:4 968 .826
Grave minor seventh. .. ..................... . 16:9 996 . 091
Minor seventh.............. ... .. .. .. ... ... .... 1.781797:1 1,000
Minor seventh............ ... ... ... .. ... ... .... 9:5 1,017 .597
Major seventh....... ... ... .. ... ... ... ...... 15:8 1,088 .269
Majorseventh................ ... .. ... ........ 1.887749:1 1,100
Octave.............. . 2:1 1,200.000

by variation in cross section for special purposes such as the simulation of the sound
of a bell.2

8h-5. Musical Scales. By international agreement the standard tuning frequency
for musical performance is the A of 440 cps. The frequencies of the equally tempered
scale based on this frequency appear in Table 3h-5. Middle C thus has a frequency
of 261.6 cps. The C of 256 cps, frequently used in the past for demonstrations in
physics, has never been adopted for practical musical performance.

18ee U.S. Pats. 1,838,502 (1931) and 1,632,751 (1927).
2 See U.S. Pats. 2,273,333 (1942), 2,516,725 (1950), 2,536,800 (1951), and 2,606,474
(1952).
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For many calculations with musical intervals it is convenient to deal with loga-
rithmic units that can be added instead of the ratios which must be multiplied. The
octave is equal to 1,200 logarithmic cents, and the equally tempered semitone is
100 cents. The interval in cents corresponding to any two frequencies f; and f; is
1,200 log: (f2/f1) = 3,986 logio (f2/f1). Table 3h-6 lists certain common intervals in
cents, and the corresponding ratios; the frequency ratios for intervals up to 100 cents
are given in Table 3h-7. o ‘

TaBLE 3h-7. RaTios FOR INTERvALs TO 100 CENTS

Cents Ratio Cents Ratio Cents Ratio Cents Ratio

0 1.000000 25 1.014545 50 1.029302 75 1.044274
1 1.000578 | 26 1.015132 51 1.029896 76 1.044877
2 1.001158 27 1.015718 52 1.030492 77 1.045481
3 1.001734 28 1.016305 53 1.031087 78 1.046085
4 1.002313 29 1.016892 54 -1.031683 79 1.046689
5 1.002892 30 1.017480 55 1.032079 80 1.047294
6 1.003472 31 1.018068 56 1.032876 81 1.047899
7 1 1.004052 32 1.018656 57 1.033473 82 1.048505
8 1.004632 33 1.019244 58 1.034070 83 1.049111
9 1.005212 34 1.019833 59 1.034667 84 1.049717
10 1.005793 35 1.020423 60 1.035265 85 1.050323
11 1.006374 36 1.021012 61 1.035863 86 1.050930
12 1.006956 37 1.021602 62 1.036462 87 1.051537
13 1.007537 38 1.022192 63 1.037060 88 1.052145
14 1.008120 39 1.022783 64 1.037660 89 1.052753
15 | 1.008702 40 | 1.023374 65 1.038259 § 90 1.053361
16 1.009285 41 1.023965 66 1.038859 91 1.053970
17 1.009868 42 1.024557 67 1.039459 92 1.054579
18 1.010451 43 1.025149 T68 1.040060 93 1.055188
19 1.011035 44 1.025741 69 1.040661 94 1.055798
20 1.011619 45 1.026334 70 1.041262 95 1.056408
21 1.012204 46 1.026927 71 1.041864 96 1.057018
22 1.012789 47 1.027520 72 1.042466 97 1.057629
23 1.013374 48 1.028114 73 1.043068 98 1.058240
24 1.013959 49 1.028708 74 1.043671 99 1.058851




3i. Radiation of Sound

FRANK MASSA

Massa Laboratories, Incorporated

3i-1. Introduction. Radiation of sound may take place in a number of ways but,
basically, all sound generators cause an alternating pressure to be set up in the fluid
medium within which the sound energy is established. The sound energy that is set
up in a medium depends not only on the physical characteristics of the medium and
the oscillatory volume displacement of the fluid set up by the vibrating source but also
upon the size and shape of the generator. The acoustic power generated by any
vibrating source can be expressed by

P =U2R, X 1077 watts (3i-1)

where U = rate of volume displacement of the fluid, cc/sec
R4 = acoustic radiation resistance of the source, acoustic ohms

If the rate of volume displacement is taken in peak cc/sec, Eq. (3i-1) will yield peak
watts of power. If the volume displacement is taken in rms cc/sec, the power will be
given in rms watts.

Of the many possible methods for generating sound, two types of generators will
effectively serve to classify most of them. These basic generators are (1) pulsating
sphere, and (2) vibrating piston.

Each type of generator has a different acoustic impedance characteristic which
depends on the dimensions of the source and on the frequency of vibration.

8i-2. Acoustic Impedance. Pulsating Sphere. The specific acoustic impedance of
a pulsating sphere is given by

pc/(@D/N)
+ [1/(xD/V)]?

where p = density of the medium, g/cc

¢ = velocity of sound in the medium, cm /sec

D = diameter of the sphere, cm

A =c/f

f = frequency, cps

It can be seen from inspection that at high frequencies, where D/\ becomes very

large, the specific acoustic impedance becomes a pure resistance equal to pc and the
reactance term vanishes. At low frequencies, where D/\ is small, the specific
acoustic impedance becomes

z + 7 1 acoustic ohms/cm? (3i-2)

_ pC
1+ [1/(=D/NP

2
z = pc (I)f—)) + Jjoc % acoustic ohms/cm? (3i-3)

A plot of the specific acoustic resistance and reactance of a pulsating sphere as a
function of D/X\isshownin Fig. 3i-1. To obtain the total acoustic radiation resistance
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R, of the sphere, it is necessary to divide the specific acoustic resistance by the total
surface area of the sphere in cm?.  The value of R4 thus determined, when substituted
in Eq. (3i-1), will give the actual acoustic watts being generated by the spherical
source.

Vibrating Piston. The specific acoustic-impedance of a circular piston set in an
infinite rigid baffle and radiating sound from one of its surfaces is given by

- J:@xD/NT . . Ki2eD/N)
2= "c[l T 2D/ ] + IS )

where D is the diameter of the piston in centimeters, J1 and K; are Bessel functions,
and the remaining symbols are defined under Eq. (3i-2).

acoustic ohms/cm?  (3i-4)
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Fia. 3i-1. Specific acoustic resistance R and reactance X of a pulsating sphere (dashed
curves) and a vibrating piston set in an infinite baffle (solid curves). To obtain magnitude
of R or X multiply ordinates by pc of the medium.

At high frequencies, where D/ is large, Eq. (3i-4) reduces to a pure resistance equal
to pc. At low frequencies, where D/\ is small, the specific acoustic impedance for a
piston set in an infinite baffle with one side radiating becomes

;= pe(wD/N\)2 +3 CSD

2 e 3% acoustic ohms/cm? (3i-5)
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A plot of the specific acoustic resistance and reactance for a vibrating piston
mounted in an infinite baffle is shown in Fig. 3i-1. To obtain the total acoustic
radiation resistance of the piston, it is necessary to divide the specific resistance by the
piston area in cm2 The value of R4 so determined, when substituted in Eq. (3i-1),
will give the actual acoustic watts being generated by a piston.

Summary of Radiation Impedance Characteristics. In Table 3i-1 are shown the
magnitudes of the acoustic radiation resistance and reactance for a sphere and piston
for both low-frequency (D/\ small) and high-frequency (D/\ large) operation.

TABLE 3i-1. TaBuLATED VALUES OoF THE TorarL Acoustic RaDIATION
RESISTANCE AND REACTANCE OF A SPHERE AND PIsTON
IN AcousTtic OHMS

D/A K1 D/A>1
R4 X4 Ra | X4
. ¢ oC
Pulsating sphere............................ ¢ £ — 0
& 8p PC I =Dx A
Vibrating piston (in infinite baffle)............ PC pe oo pe 0
222 3D\ A
p = density of the medium, g/cm? f = frequency of the sound vibration, cps
¢ = velocity of sound in the medium, cm/sec D = diameter of sphere or pistion, cm
A = wavelength of sound in the medium, em A = surface area of sphere or piston, cm?
A=c/f

3i-3. Directional Radiation of Sound. Whenever sound energy is generated from
a source whose dimensions are small compared with the wavelength of the vibration
in the medium, the intensity will be uniform in all angular directions and the generator
is generally defined as a point source. When the dimensions of the vibrating surface
are large compared with the wavelength, phase interferences will be experienced at
different points in space due to the differences in time arrival of the vibrations origi-
nating from different portions of the surface, which results in a nonuniform directional
radiation pattern. Practical use is made of this phenomena when it is desired to
produce special directional patterns by arranging the geometry and size of the vibrat-
ing surfaces of a sound generator to create the desired characteristic.

In many ingtances, a transmitter is designed so that the sound is radiated in a rela-
tively sharp beam so that the energy is concentrated only within a specific desired
angular region. When such a directional structure is employed as a receiver, the
transducer will be more capable of picking up weak signals from a specified direction
than would be the case from a nondirectional transducer. The reason for thisimprove-
ment is the reduced sensitivity of the directional receiver to random background
noises that will be present in all directions from the source. The number of decibels
by which the signal-to-noise ratio is improved by a directional receiver over a non-
directional receiver is known as the directivity index of the transducer. It will be
defined more fully later. The following will show the directional radiation character-
istics of several common structures.

Uniform Line Source. If a uniform long line is vibrating at uniform amplitude, the
radiated sound intensity will be a maximum in a plane which is the perpendicular
bisector of the line. At angles removed from the perpendicular bisector of the line,
the intensity will fall off to a series of nulls and secondary maxima of diminishing
amplitudes as the angle of incidence to the axis of the line deviates from the normal
bisector of the line. For a line of length L vibrating uniformly over its entire length
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at a frequency corresponding to a wavelength of sound A in the medium, the ratio of
the sound pressure pg produced at an angle © remaved from the normal axis of maxi-
mum response to the sound pressure po on the normal axis is given by

po _ sin [(xL/)) sin O]
po  (xL/\) sin ©

(3i-6)

If L is large compared with A, the response as a function of © will go through a series
of nulls and secondary maxima of successively diminishing amplitudes.
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Fi1a. 3i-2. Total beam angle for a piston, ring, and line source as a function of size of source
to wavelength of sound being radiated. A, thin ring of diameter D. B, uniform line of
length L. C, piston of diameter D. (Curves A and C from Massa, ** Acoustic Design
Charts,” The Blakiston Division, McGraw-Hill Book Company, Inc., New York, 1942.)

Circular Piston in Infinite Baffle. The directional radiation pattern from a large
circular piston vibrating at constant amplitude and phase and set into an infinite rigid
baffle may be obtained from the expression

po _ 2J:[(xD/M) sin 6]

Po (rD/X) sin © (3i-7)

where po = sound pressure at an angle 6 from the normal axis of the piston
Po = sound pressure on normal axis of piston
D = diameter of piston
A = wavelength of sound
J1 = Bessel function of order 1
From this equation, it can be seen that, as D/ increases, the beam width becomes
smaller and the sound pressure goes through a series of nulls and secondary maxima
as © progressively departs from the normal axis to the piston.
Thin Circular Ring. The directional radiation pattern from a large narrow circular
ring of diameter D vibrating at constant amplitude and fitted into an infinite plane
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baffle may be obtained from the expression
: $

D. .\ .
Z—(: = Jy (7—3\— gin e) (3i-8)
where Jo = Bessel function of order zero and all other symbols are defined under

Eq. (3i-7).

Beam Width for Line, Piston, and Ring. From Egs. (3i-6), (3i-7), and (3i-8), the
total beam width has been computed for the radiation from each of the three types of
sound generators. The total beam width is here defined as the angle 26 at which the
pressure po is reduced 10 db in magnitude from the maximum on axis response po.
By setting pe/po equal to —10 db or 0.316 in magnitude in these equations, the three
curves plotted in Fig. 3i-2 were computed.
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F16. 3i-3. Directivity index of a piston or ring as a function of total beam angle where beam
angle is defined as the included angle of the main beam between the 10-decibel-down points
in the directional response. (Computed from Massa, “ Acoustic Design Charts,” The
Blakiston Division, McGraw-Hill Book Company, Inc., New York, 1942.)

8i-4. Directivity Index. It has already been mentioned that a directional trans-
ducer has an advantage over a nondirectional structure whenever it is desired to send
or receive signals from a particular localized direction only. The fact that the direc-
tional transducer is less sensitive to sounds coming from random undesired directions
makes it possible for it to detect weaker signals than would be possible with a non-
directional unit. The measure of this improvement in decibels corresponds to the
directivity index of the transducer. The directivity index of a transducer is defined
as the ratio of the total power radiated by a transducer to the total power required
by a nondirectional transducer to produce the same peak intensity as is produced by
the directional transducer on its axis of maximum response.

The directivity index of a transducer is expressed in decibels, and a plot of the
directivity index as a function of beam width for a piston or ring is shown in Fig. 3i-3.
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3j-1. Sound-absorptive Materials. When sound waves strike a surface, the energy
may be divided into three portions: the incident, reflected, and absorbed energy.
Suppose plane waves are incident on a surface of infinite extent. For this case, the
absorption coeflicient « of the surface may be defined as

/ I,-ds 31)

/IA - ds

where I, is the time average of the intensity vector of the sound field at the absorptive
surface; ds is the vector surface element—the positive direction being into the material
from the incident side; and I, is the time average of the intensity vector which would
exist at the surface element if the surface were removed. The absorption coeﬁicwnt
defined above is a function of angle of incidence and frequency.

For acoustical designing in architecture it is convenient to use an “average”
absorption coefficient o which is assumed to depend only on the physical characteristics
of the material and not on the sound field. These are the values of absorption that are
given in this section. A surface having an absorption coefficient « and area S square
feet is said to have an absorption of «S sabins. Thus the sabin (sometimes called a
square-foot unit of absorption) is the absorption equivalent of 1 sq ft of material hav-
ing an absorption coefficient of unity.

A quantity which describes the acoustical properties of a material that is more
fundamental than absorption coefficient is its acoustic impedance, defined as the com-
plex ratio of sound pressure to the corresponding particle velocity at the surface of the
material. Because of the complexities involved in the solutions to problems of room
acoustics by boundary-value theory in terms of boundary impedances,! the simpler
concept of absorption coefficient is usually employed in calculating the acoustical
properties of rooms, as indicated in the following section.

Most manufactured acoustical materials depend largely on their porosity for their
acoustic absorption, the sound waves being converted into heat as they are propagated
into the interstices of the material and also by vibration of the small fibers of the
material. Another important mechanism of absorption is panel vibration; when
sound waves force a panel into motion the resulting flexual vibration converts a frac-
tion of the incident sound energy into heat.

The average value of absorption coefficient of a material varies with frequency.
Tables usually list the values of « at 125, 250, 500, 1,000, and 4,000 cps, or at 128, 256,

1P. M. Morse, ‘‘Vibration and Sound,” chap. VIII, McGraw-Hlll Book Company,
Inc., New York, 1948.

3-113
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- 512, 1,024, 2,048, and 4,096 cps, which for practical purposes are identical. In com-
paring materials which are used for noise-reduction purposes in offices, banks, corridors,
etc., it is sometimes useful to employ a single figure called the noise-reduction coeffi-
cient (abbreviated NRC) of the material which is the average of the absorption
coefficients at 250, 500, 1,000, and 2,000 cps, to the nearest multiple of 0.05.

Figures 3j-1 through 3j-4 give the absorption coefficient vs. frequency for several
types of acoustical material.! The absorption-frequency characteristics of regularly
perforated cellulose fiber tile % in. thick is shown in Fig. 3j-1. These curves represent
average coefficients for materials of the same type, thickness, and method of mounting
but of different manufacture. Similar data are shown in Fig. 3j-2 for fissured mineral
tile 35 in. thick. Values of noise-reduction coefficient are shown to the right of the
graph. Values of absorption coefficient for various types of building materials are
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F1c. 3j-1. The absorption vs. frequency characteristic for regularly perforated cellulose
fiber acoustical tile. These data represent average values for §-in. tile having the same
thickness and mounted in the same way but of different manufacture. (After H. J.
Sabine.) ‘

given in Table 3j-1.2 The equivalent absorption of individuals and seats, expressed
in sabins, is given in Table 3j-2. More complete data, and data for other types of
material, are given in Knudsen and Harris.* Sound-absorptive materials and struc-
tures may be classified in the following way: (1) prefabricated units, including acous-
tical tile, tile boards, and certain mechanically perforated units backed with absorptive
material; (2) acoustical plasters; (3) acoustical blankets, consisting of mineral wool,
glass fibers, hair felt, or wood fibers held together in blanket form by a suitable binder;
(4) panel absorbers, including panels of plywood, paperboard, and pressed-wood fiber;
(5) membrane absorbers consisting of a membrane of negligible stiffness backed by an
enclosed air space; (6) resonator absorbers of the Helmholtz type; and (7) special types.

1 C, M. Harris, “ Handbook of Noise Control,”” chapter by H. J. Sabine, McGraw-Hill
Book Company, Inc., New York, in preparation.

2 Acoustical Materials Association, Bull. XV, New York, 1955.

3V. O. Knudsen and C. M. Harris, * Acoustical Designing in Architecture,’”’ John Wiley
& Sons, Inc., New York, 1950.
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Fia. 3j-2. The absorption vs. frequency characteristic for fissured mineral tile. These data
represent average values for 1§-in. tile having the same thickness and mounted in the same
way but of different manufacture. (After H. J. Sabine.) '
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Fia. 3j-3. The absorption vs. frequency characteristic for regularly perforated cellulose
fiber acoustical tile which has been spot-cemented to a rigid surface. These data represent
the average value for tiles of different manufacture, mounted in the same way and having
different thickness. (After H. J. Sabine.)

8j-2. Reverberation-time Calculations. After sound has been produced in or
enters an enclosed space it will be reflected by the boundaries of the enclosure.
Although some energy is lost at each reflection, several seconds may elapse before the
sound decays to inaudibility. This prolongation of sound after the original source
has stopped is called reverberation, a certain amount of which is found to add a pleasing
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TaBLE 3j-1. ABsOoRPTION COEFFICIENTS FOR BUILDING MATERIALS*

Coeflicients
Material
125 cps 500 cps 2,000 cps
Brick wall, painted............. ... .. ... ... 0.012 0.017 0.023
Same, unpainted. ............ ... ... ... 0.024 0.03 0.049
Carpet, unlined. ... ....... ... ... ... ..... 0.09 0.20 0.27
Same, felt-lined..................... ... ... 0.11 0.37 0.27
Fabrics, hung straight:
Light, 10 o0z/sq yd........ ... .. .. il 0.04 0.11 0.30
Medium, 14 0z/sq yd.........c.coiii.. 0.06 0.13 0.40
Heavy, draped, 18 oz/sq yd................ 0.10 0.50 0.82
Floors:
Concrete or terrazzo. ...............ovun... 0.01. 0.015 0.02
Wood. . ..o 0.05 0.03 0.03
Linoleum, asphalt, rubber or cork tile on con-
[0} =1 7 < U 0.03-0.08
GlasS. .o 0.035 0.027 0.02
Marble or glazed tile.............. ... ... ... 0.01 0.01 0.015
Openings:
Stage, depending on furnishings............. 0.25-0.75
Deep balcony, upholstered seats............ 0.50-1.00
Grills, ventilating. ............. ... .. ...... 0.15-0.50
Plaster, gypsum, or lime, smooth finish on tile or
brick. ... ... 0.013 0.025 0.04
Same,onlath............................ 0.02 0.03 0.04
Plaster, gypsum, or lime, rough finish on lath..; 0.039 0.06 0.054
Wood paneling........... ... ... 0.08 0.06 0.06
* From AMA Bull. XV, no. 2.
TABLE 3j-2. ABSORPTION OF SEATS AND AUDIENCE*
(In sabins per person or unit of seating)
125 cps 500 cps 2,000 cps
Audience, seated, depending on character
of seats,etc........... ... .l 1.0-2.0 3.0-4.3 3.5-6.0
Chairs, metal or wood.................. 0.15 0.17 0.20
Wood Pews. .. .. ovvi i 0.40
Pew cushions (without pews)............| 0.76-1.1 1.45-1.90 1.4-1.7
Theater and auditorium chairs:
Wood-veneer seat and back........... 0.25
Upholstered in leatherette............. 1.6
Heavily upholstered in plush or mohair. 2.6-3.0

* From AMA Bull. XV, no. 2.
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A ]
characteristic to the acoustical qualities of a room. On the other hand, excessive
reverberation can ruin the acoustical properties of an otherwise well-designed room.

Because of the importance of the proper control of reverberation in rooms, a
standard of measure called reverberation time (abbreviated tss) has been established.
It is one of the important parameters in architectural acoustics. This is the time
required for a specified sound to die away to one-thousandth of its initial pressure, a
drop in sound pressure level of 60 db. It is given by the following equation:

0.049V

0 = S[—2.30Togw (I — &)] T dmV  °° (3i-2)
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Fia. 3j-4. Values of the attenuation coefficient m as a function of relative humldlty for
different frequencies. (After V. 0. Knudsen and C. M. Harris.)

and when & is small compared with unity,

0.049V

teo = m sec (3]-3)
where V = volume of the room, cu ft
S = total surface area, sq ft
& = average absorption coefficient given by
a1S1 + as8: 4+ asS; + - - - a .
a = = - -
S +® 48+ - 8 3i-4)
a1 = absorption coefficient of area S, etc.
a = total absorption in the room, sabins



3-118 . ACOUSTICS

The quantity m is the attenuation coefficient for air given by Fig. 3j-4.1 For rela-
tively small auditoriums and frequencies below 2,000 cps, the mV term can usually
be neglected so that Eq. (3j-3) reduces to

0.049V

% = " Sa

3j-3. Optimum Reverberation Time. A certain amount of reverberation in a room -
adds a pleasing quality to music. Since the reverberation time one would consider
to be optimum is a matter of personal preference, it is not a quantity that can be
calculated from a formula. On the other hand, useful engineering-design data may
be obtained from a critical evaluation of empirical data based upon the preference
evaluations of large groups of individuals. The results of such information from all
available sources considered reliable, in this country and abroad, have been carefully

sec (3j-5)
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Fia. 3j-5. Optimum reverberation time at 512 cps for different types of rooms as a function
of room volume. - This figure should be used in conjunction with Fig. 3j-6 to obtain
optimum reverberation time as a function of frequency. (After V. O. Knudsen and C. M.
Harris.)

evaluated by Knudsen and Harris,! who have published the curves for optimum
reverberation time shown in Figs. 3j-5 and 3j-6. The data in Fig. 3j-5 give the
optimum reverberation times at 512 cps as a furfction of volume for rooms and audi-
toriums that are used for different purposes. Since the optimum reverberation
time for music depends on the type of music, it is represented by a broad band. The
optimum reverberation time for a room used primarily for speech is considerably
shorter; a reverberation time longer than those shown results in a decrease in speech
intelligibility.

The optimum reverberation times at frequencies other than 512 eps is obtained by
multiplying the values given in Fig. 3j-5 by the ratio R from Fig. 3j-6 for the desired
frequency. These data indicate that below 512 cps the optimum reverberation time
may fall anywhere in a wide range shown by the crosshatched band; smaller rooms
usually have preferred ratios that are in the lower part of the band.

1 Ibid.
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8j-4. Air-borne Sound Transmission through Partitions. The fraction of incident
sound energy transmitted through a partition is called its transmission coefficient r.
In rating the noise-insulating value of partitions, windows, and doors, it is generally
convenient to employ a logarithmic quantity, transmission loss T.L., which is equal
to the number of decibels by which sound energy that is incident on a partition is
reduced in transmission through it. The two quantities are related by the equation

T.L. = 10 log_% db (3j-6)

Air-borne sound is transmitted through a so-called ‘““rigid”’ partition, such as a wall
of concrete or brick, by forcing it into vibration; then the vibrating partition becomes
a secondary source, radiating sound to the side opposite the original source. Over a
large portion of the audible range, such a partition, on the average, approximates a
mass-controlled system so that its transmission loss should increase 6 db each time
the weight of the partition is doubled. In most actual partitions the increase is
usually less, say 4 to 5 db for the average frequency,range between 128 and 2,048 cps.
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Fia. 3j-6. Chart for computing optimum reverberation time as a function of frequency
The time at any frequency is given in terms of a ratio R which should be multiplied by the
optimum time at 512 cps (from Fig. 3j-5) to obtain the optimum time at that frequency.
(After V. O. Knudsen and C. M. Harris.)

This is illustrated by Fig. 3j-7, which gives the transmission loss (averaged over
frequency in the range from 128 to 4,096 cps) as a function of weight of the partition
in pounds per square foot of surface area. The straight line represents the calculated
transmission loss assuming that the values of T.L. increase 6 db for each doubling of
the weight. The transmission loss for a partition is not constant with frequency,
increasing usually 3 to 6 db/octave.

Note that a compound-wall construction can yield relatively high sound insulation
with relatively low mass per unit wall area. The double-wall construction is one such
example. It is important that the separation between the walls be as complete as
possible—structural ties will greatly reduce the effectiveness of such a structure.

Values of transmission loss for various types of walls and floors employed in ordinary
building construction are given in Table 3j-3 and Fig. 3j-7.1

8j-6. Noise Level within a Room. The sound level of noise which is transmitted
into a room from the outside depends on (1) the noise-insulating properties of its

! Knudsen and Harris, op. cit.; Sound Insulation of Wall and Floor Constructions,
Building Materials and Structures, Natl. Bur. Standards (U.S.) Rept. 144 (1955).



3-120 ' ACOUSTICS

bounding surfaces, (2) the total absorption in the room, and (3) the characteristics
of the noise source. The following formula gives a rating of the over-all noise reduc-
tion provided by the enclosure. It represents, approximately, the difference between
the noise level outside a room and the noise level inside a room.

Noise-insulation factor = 10 log % db 3i-7)

where a represents the total absorption in the room in sabins defined by Eq. (3j-4), and
T represents the total transmittance of the enclosure given by

T = 1-181 + T2S2 + TsSa + e (3]-8)

where 7, is equal to the transmission coefficient of area S,, etc.
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Fia. 3j-7. Transmission loss, average over frequency in the range from 128 to 4,096 cps, as a
function of weight of the parts in pounds per square foot of surface area.

If a source of noise is within a room, then at distances near to the source the sound
pressure decreases inversely with increasing distance from the source; there is a
decrease in sound pressure level of 6 db for each doubling of the distance from the
source, just as if the source were in the open air. However, at every point in the room
there will be an additional contribution to the total pressure as a result of reflections
from the walls. As one recedes from the source the reflected contributions become
more and more important until direct sound from the source becomes negligible by
comparison.

Then if the sound field is diffuse (perfect diffusion is said to exist if the sound pres-
sure everywhere in the room is the same, and it is equally probable that the waves are
_ traveling in every direction) the sound pressure level in the room will be given approxi-
mately by

L, = 10 logLZ +136.4 db 3i-9)

if a value of pc = 40.8 rayls is assumed for air, and
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where W = power of the sound source, watts

a = total absorption of the room, sabins
A copsideration of the above formula shows that, if the acoustic-power output of the
noise source remains constant, and if the total absorption in the room is increased
froma; to a: the reduction in noise level is given by

Noise reduction = 10 log 3—2 db (3j-10)
1

TaBLE 3j-3. VALUES oF TraNsmiIssioN Loss T.L. vs. FREQUENCY FOR VARIOUS
Types oF WALL AND FroorR CONSTRUCTION*

Aver-
. Weight, | age, | 128|256 | 512 | 1,024 2,048] 4,096 .
Construction Ib/sq ft | 128~ | eps | cps | cps | ops | ops | ops Authorityt
4,096
Wood studs 2 by 4 in., 16 in. o.c.:
With lime plaster § in. thick on
metal lath..................... 19.8 44 26 | 41 | 44 52 56 58 N.B.S.
With gypsum plaster 3 in. thick on
Z.in, gypsum lath................ 15.2 41 |83 (31/39| 46 | 49 | 66 N.B.S.
Wood studs, 2 by 4 in., staggered; %—in.
gypsum plaster on metal lath...... 19.8 50 44 | 47 | 47 50 52 63 N.B.S.
Staggered wood studs 1 by 3 in., %—in.
plywood glued to both sides. ... ... 2.6 26 14 | 20 | 28 | 33 40 30 N.B.8.

Two sets of 2- by 2-in. wood studs,
4-in. plywood sheet inserted in 3-in.
space between studs, 1-in. plywood
faces, slightly compressed paper-
backed mineral wood inserted in
both air spaces, total panel thickness
43in. . i | B 87 1203137 41 | 49 | 50 | N.B.S.

Steel studs, 3 in., 16 in. o.c., %—in. gyp- }
sum plaster on expanded metal lath.| 19.6 37 30 | 28 (35| 40 43 53 N.B.S.

Brick, laid on edge; gypsum plaster on
bothsides....................... 31.6 42 40 | 37 | 49 59 N.B.S.

Tile, hollow partition, 4 in. thick,
pumice-cement block, two cells 4 by

8 by 16 in., no plaster............. 15.5 11 8 5 9 14 19 17 N.B.S.
Same, but one side plastered......... 20.4 35 31|27 |35 36 40 47 N.B.S.
Same, but both sides plastered....... 25.3 37 32 | 34| 36 39 42 52 N.B.S.
Cinder block, hollow partition 8 by 8

by 16 in., plaster on both sides..... 32.2 45 34 | 37 | 42 | 51 57 64 N.B.S.

Multiple-block partition; two leaves,
each of 3-in. hollow blocks, sepa-
rated by 2-in. cavity and built on
opposite sides of gap separating
rooms; outer faces plastered (two
partitions of nominally the same
construction). ................... 28 9 54 | 38 | 47 | 49 69 77 N.P.L.

Wood joints, 2 by 8 in., 3-in. fiber-
board lath and i-in. gypsum plaster
ceiling; 1-in. pine subflooring and
1-in. pine finish flooring........... 14.3 45 23 | 34 | 47 | 55 54 69 N.B.8.

Same joists and ceiling as above; 1-in.

- " pine subfloor; %—in. fiberboard, 1-by
8-in. sleepers, and 1-in. pine finish
floor.......ovi i 16.2 50 30 | 37 | 50 | 57 65 79 N.B.S.

* For the average values for other types of construction, and for windows and doors, also see Fig. 3j-7.
T N.B.S. denotes National Bureau of Standards; N.P.L. denotes National Physical Laboratory.
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According to this equation, which should be regarded as an engineering approximation
to actual conditions, if the absorption in a room is increased by a factor of 4 the noise
reduction will be 6 db. It shows that the addition of absorption level in a room will
provide substantial noise reduction in average level in a room that is relatively bare
but little decrease level in a highly damped room. The reduction will be different at
different frequencies since the total absorption is a function of frequency. However,
it is sometimes convenient to employ the noise-reduction coefficient of a material to
obtain a single noise-reduction figure. Besides reducing the steady-state level, the
addition of absorptive treatment in a room also provides beneficial effects by reducing
the reverberation time in the room and by localizing the source of noise to the area in
which it originates—thereby minimizing unexpected noises.

TABLE 3j-4. RECOMMENDED ACCEPTABLE AVERAGE NOISE LEVELS IN
Un~occupriED Rooms*

Decibels
Radio, recording, and television studios.............. 25-30
MusiC TOOMS. .. ... e e 30-35
Legitimate theaters................................ 30-35
Hospitals. ... ... .. ... . 35-40
Motion-picture theaters, auditoriums................ 35-40
Churchés ....... ... ... .. 35-40
Apartments, hotels, homes. ........................ 35-45
Classrooms, lecturerooms ......................... 35-40
Conference rooms, smalloffices...................... 40-45
Courtrooms. ..........covvniiennnenen. e 40-45
Private offices. ........ ... ... .. i 40-45
Libraries. .. ... e 40-45 -
Large public offices, banks, stores, ete............... 45-55
Restaurants.............. . ... 50-55

The levels given in this table are * weighted’’; i.e., they are the levels measured with a standard sound-
level meter incorporating an ‘A’ (40-db) frequency-weighting network.

* V. O. Knudsen and C. M. Harris, ‘‘ Acoustical Designing in Architecture,”” John Wiley & Sons, Inc.,
New York, 1950.

3j-6. Acceptable Noise Levels for Various Types of Room. Table 3j-4 gives values
of recommended acceptable average noise levels for unoccupied rooms with the ventila-
tion system in operation. These values are used for design purposes, for example, in
computing the amount of over-all noise insulation that should be provided for a room.
They hold for typical room-noise spectra. Although even lower noise levels than those
which are listed may provide some advantage under certain circumstances, and may
be desirable if cost is not a factor, this table gives values which represent a combination
of acceptability and economic practicality. For certain types of room the values
which are recommended are lower than those which are commonly found.



3k. Speech and Hearing

EDWIN B. NEWMAN! :

Harvard University

The data concerning hearing are, without exception, empirical in derivation. Con-
sequently, the values reported always represent some parameter of a population, most
often a mean, and the reader is warned to bear constantly in mind the many sources
of variability that attach to any particular measurement.

3k-1. Physical Dimensions of the Ear

TaBLE 3k-1. PrYsicAL DIMENSIONS OF THE HEAR*

Pinna:

Mean length, young men, 65.0 mm

Range, 52-79 mm

Auditory meatus:

Cross section, 0.3-0.5 cm?

Diameter, 0.7 cm

Length, 2.7 cm

Volume, 1.0 cc

Tympanic membrane:

Area, 0.5-0.9 cm? (roughly circular)

Thickness, about 0.1 mm

Volume elasticity for 10 cps, equivalent
to about 8 cc air

Displacement amplitude for 1,000-cps
tone (at threshold), 10~° cm

Displacement amplitude for low-fre-
quency tones (threshold of feeling),
about 10~2 cm

Middle ear:
Total volume, about 2 cc

Malleus: _
Weight, 23 mg
Length, 5.5-6.0 mm

Incus: weight, 27 mg

Stapes:
Weight, 215 mg
Length of footplate, 3.2 mm
Width of footplate, 1.4 mm
Area of footplate, 3.2 mm?
Width of elastic ligament, 0.015-

0.1 mm

Cochlea:

Length of cochlear channels, 35 mm
Height of scala vestibuli or scala tym-
pani, about 1 mm (great variability)
Round window: area, 2 mm?
Basilar membrane:
Width at stapes, 0.04 mm
Width at helicotrema, 0.5 mm
Helicotrema: area of opening, 0.25-
0.4 mm?

* 8. 8. Stevens, ed., ‘“ Handbook of Experimental Psychology,” John Wiley & Sons, Inc., New York,
1951,

3k-2. Acoustic Impedance of the Ear. Reasonable agreement on measurements
below 1,000 cps has been obtained. The reference point for measurements is just

1 This section benefited from the advice and assistance of Dr. S. S. Stevens and Mrs.
Nancy C. Waugh. ’

3-123
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TaBLE 3k-2. Acoustic IMPEDANCE OF THE EAR IN Acoustic OHMS, MEASURED
JUST WITHIN THE MEATUS

Frequency Total impedance Resistive component, Reactive component
250 200 50 —190
350 150 40 —145
500 125 35 —115
700 70 25. ‘ —65
1,000 55 25 —50

Above 1,000 cycles, measurements depend increasingly on the method of measurement.

TaBLE 3k-3. MINIMUM AUDIBLE PRESSURE AT ENTRANCE TO EXTERNAL EAR
Canarn (MAC), 1N DeciBeLs SPL

Frequency

80 125 | 250 | 500 |1,000f2,000 4,000’ 6,000 | 8,000 {10,000

Threshold....| 43.5 { 30.0 | 18.5 | 11.5 | 9.0 | 8.0 9.5

13.0 | 17.0 )21,0

The following corrections may be applied if it is desired to find thresholds for other
conditions:

a. MAC to Threshold Pressure at Eardrum®

Frequency

125 | 250 | 500 1,000 | 2,000 | 4,000 | 6,000 | 8,000 |10,000

Add........;00},00| —0.5| —1.0| —4.5| —10.5| —4.0 | —2.5

b. MAC to Equivalent Coupler Calibration of Various Earphones®®¢

Frequency
125 250 | 500 | 1,000 2,000| 4,000/ 6,000 | 8,000 10,000{ Coupler

Add for

PDR-8 with

MX-41/AR| +8.0| +4.0/+0.5+1.0{+1.5/4+4.5+12.0(—3.0] .. NBS-9A
Add for WE

T05A....... 4+13.0| +4.0{+0.5/+1.0{+4.5+5.0f —0.5—7.0 .. NBS-9A
Add for STC

4026A...... +14.5/+11.0{4+0.5{—3.5/+1.0,4+0.5| —4.0|—7.5] .. NPL?

s F, M. Wiener and D. A. Ross, The Pressure Distribution in the Auditory Canal in a Progressive
Sound Field, J. Acoust. Soc. Am. 18, 401-408 (1946).

bL. J. Wheeler and E. D. D. Dickson, The Determination of the Threshold of Hearing, J. Laryngol.
Otol. 66, 379-395 (1952).

¢ B, L. R. Corliss, R. F. Brown, Jr M. D. Burkhard, R. P. Thompson, Jr., and J. F. Mullen, Methods
for Calibration of Hearing Dlagnostlc Instruments, Natl. Bur. Standards (U. S) Rept. 1470, 1-43 (1952).
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TaBLE 3k-3. MINIMUM AUDIBLE PRESSURE AT ENTRANCE To EXTERNAL EAR
Canar (MAC), 1x DeciBeLs SPL (Continued)

c. MAC to Free Field (MAF) (plane wave, 0° azimuth in absence of head)?

Frequency

125 | 250 | 500 | 1,000 2,000 ‘ 4,000 | 6,000 | 8,000 | 10,000

Add.......... +1.0} +0.5| —2.0| —4.0 ——11.0’—12‘5 ~7.01 —=3.0| —-3.0

d. Mean Monaural to Mean Binaural Listeninge

Frequency

125-2,000 - | 4,000 6,000 8,000 | 10,000

Add..................... —-2.0 —-3.0 —4.0 —-5.0 —6.0

e. Reference Age Group (18-25) to Older Age Groups”

Frequency
125-1,000 2,000 4,000 6,000 8,000 10,000
Add for:

Men 30-39......... +1.0 +2.0 +5.0 +6.0 +6.0 +7.0
Men 40-49......... +2.0 +5.0 | +13.0 | +13.0 | +11.0 | +13.0
Men 50-59......... +5.0 +13.0 | +27.0 | +32.0 | +35.0 | +35.0
Women 30-39...... +1.0 +2.0 +3.0 +4.0 +4.0 +4.0
‘Women 40-49. . . ... +3.0 +5.0 +6.0 +8.0 +9.0 +9.0
Women 50-59....... +5.0 +9.0 | +13.0{ +18.0 | +20.0 | +22.0

4 L. J. Sivian and S. D. White, On Minimum Audible Sound Fields, J. Acoust. Soc. Am. 4, 288-321
(1933).

¢ H. Fletcher, ‘“Speech and Hearing in Communication,” p. 131, D. Van Nostrand Company, Inc.,
New York, 1953.

7 J. C. Steinberg, H. C. Montgomery and M. B. Gardner, Results of the World’s Fair Hearing Tests,
J. Acoust. Soc. Am. 12, 291-301 (1940): J. C. Webster, H. W. Himes, and M. Lichtenstein, San Diego
County Fair Hearing Survey, J. Acoust. Soc. Am. 22, 473-483 (1950).

within the external meatus. The values in Table 3k-2 are representative but are
subject to wide variations among individuals.?

3k-3. Minimum Audible Sound. The best recent measurements use as their point
of reference the sound pressure level of a tone, heard one-half the time, and measured
at the entrance to the external meatus. The observations were made on healthy
young men, eighteen to twenty-five years of age, tested individually with earphones,
one ear at a time. Sound pressures were determined with a probe-tube microphone
and are given in decibels above 0.0002 dyne/cm2. N = 1,200 ears.?

1 E. Waetzmann and L. Keibs, Horschwellenbestimmungen mit dem Thermophon und
Messungen am Trommelfell, Ann. Physik 26, 141-144 (1936); O. Metz, The Acoustic
Impedance Measured on Normal and Pathological Ears, Acta Oto-Laryngol., Suppl. 63,
1-254 (1946); A. H. Inglis, C. H. G. Gray, and R. T. Jenkins, A Voice and Ear for Tele-
phone Measurements, Bell System Tech. J. 11, 293-317 (1932).

2 R. 8. Dadson and J. H. King, A Determination of the Normal Threshold of Hearing
and Its Relation to the Standardization of Audiometers, J. Laryngol. Otol. 66, 366—378

(1952); L. J. Wheeler and E. D. D. Dickson, The Determination of the Threshold of
Hearing, J. Laryngol. Otol. 66, 379-395 (1952). -
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8k-4. Threshold of Feeling or Discomfort. The upper limit for a tolerable intensity
of sound rises substantially with increasing habituation. Moreover, a variety of sub-
jective effects are reported, such as discomfort, tickle, pressure, and pain, each at a
slightly different level. As a simple engineering estimate it can be said that naive
listeners reach a limit at about 125 db SPL and experienced listeners at 135 to 140 db.
These are over-all measures of sound falling within the audible range and are roughly
independent of frequency.

8k-6. Differential Thresholds for Pure Tones and Noise. A differential threshold
represents a careful determination by laboratory methods of the ability of a subject

TaBLE 3k-4. DIrrERENTIAL THRESHOLD FOR INTENsITY, IN DECIBELS

. Pure tones, frequency in cps
Sensation level,

db above absolute . White
threshold 35 70 200 | 1,000 | 4,000 | 7,000 | 10,000 noise
5 ceeo | ... 4751 3.03 | 2.48|4.05|4.72| 1.80
10 7.24 | 4.22|13.44,235{1.70| 2.83 |3.34| 1.20
20 4.31|12.38|11.93|1.46|0.97|1.49 | 1.70 | 0.47
30 2.7211.52]1.24|1.00|0.68| 0.90| 1.10| 0.44
40 1.76 | 1.04 | 0.86 | 0.72 | 0.49 1 0.68 | 0.86 | 0.42
50 0.75 ] 0.68 | 0.53 | 0.41 | 0.61|0.75| 0.41
60 0.61|0.53|0.41|0.29|0.53| 0.68 0.41
70 0.57 { 0.45| 0.33 | 0.25| 0.49 | 0.61
80 0.41 1 0.29 | 0.25 | 0.45 | 0.57
90 0.4110.29 | 0.21 | 0.41
100 0.25 ] 0.21
110 0.25

TasLe 3k-5. DIFFERENTIAL THRESHOLD FOR FREQUENCY, IN AF/F*

Sensation level, Pure tones, frequency in cps

db above abso- ‘

lute threshold 60 125 250 500 1,000 2,000 4,000

5 0.0252 | 0.0110 { 0.0097 | 0.0065 | 0.0049 | 0.0040 | 0.0077

10 0.0140 | 0.0060 | 0.0053 | 0.0035 | 0.0027 | 0.0022 | 0.0042
15 0.0092 | 0.0040 | 0.0035 | 0.0024 | 0.0018 | 0.0014 | 0.0028
20 0.0073 | 0.0032 | 0.0028 | 0.0019 | 0.0014 | 0.0012 | 0.0022
30 0.0032 | 0.0028 | 0.0019 | 0.0014 | 0.0011 | 0.0022

* J. D. Harris, Pitch Discrimination, J. Acoust. Soc. Am. 24, 750-755 (1952).

to just detect, and report, a difference in any specific property of a sound, all other
factors presumably being held constant.

The method for determining the differential threshold for intensity of pure tones
employed one tone beating with a second tone at 3 beats per second.! Much evidence
is available to support what should be kept always in mind, that thresholds determined

1 R. R. Reisz, Differential Intensity Sensitivity of the Ear for Pure Tones, Phys. Rev.
31, 867-875 (1928).
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by other methods are a function of numerous psychological parameters and will differ
systematically from the values in Table 3k-4. A more conventional method was used
to determine the thresholds for white noise, with the results given in the last column.!

The ability to distinguish pitch is subject to.a greater range of individual variability
than other functions reported here. The data given are for three trained listeners and
have been smoothed in both directions. Untrained listeners usually require a greater
frequency difference than that reported here. Note also that md1v1dua1 listeners
commonly show idiosyncrasies at particular frequencies.

8k-6. Masking. Masking refers to our inability to hear a weak sound in the
presence of a louder sound. It is usually measured by the amount of change in the
threshold of the weaker sound, i.e., how much more intense must the weak .sound be
made in order to be heard over the masking sound, than it needed to be when the
masking sound was not present. The masking of one pure tone by another is a com-
plex function of the particular frequencies and of the absolute level of the respective
tones. See any standard text on hearing for the curves describing this relationship.

The masking of a pure tone by a noise with a reasonably flat and continuous spec-
trum is a linear function (except at levels below 10 db) of the total intensity within a
““critical band’’ centered on the masked tone. The width of the critical band of

frequencies whose total energy is just equal to the energy of the masked tone is given
by Table 3k-6.

TaBLE 3k-6. WipTH OF ‘‘CRITICAL BaAND” ‘AF As A FuUNCTION OF CENTER
FreEQUENCY F (10 log AF)*

Frequency

100 250 | 500 | 1,000 | 2,000 | 4,000 l 8,000 '10,000

AF, db 19.4 | 17.1 17.1 18.0 19.9 | 23.1

27.7 l 29.2

* N. R. French and J. C. Steinberg, Factors Governing the Intelhglblllty of Speech Sounds, J. Acoust.
Soc. Am. 19, 90-119 (1947).

The masking of one continuous noise by another can be thought of as a case of
differential sensitivity to change in the intensity of a noise (see last column of Table
3k-4). Thus, above 40 db SPL, if a weak noise is more than 10 db less intense than a
very similar masking noise, the weak noise will not be heard; its presence or absence
does not produce a discriminable difference in intensity. If the spectral composition
of the two noises, masking and masked, are quite different, then the critical-band
concept must be employed.

3k-7. Sounds of Short Duration. Acoustic disturbances of very short duration,
Le., less than 0.0001 sec, are heard only to the extent that they transmit energy to the
ear. Short pulses at ultrasonic frequencies are generally not heard unless they are
rectified. Impulse or step functions excite. the ear, but not efficiently.

At the opposite extreme, tones, or continuous noise, of duration greater than from
0.2 to 0.5 sec, are generally heard independently of duration. Between these limits

relatively complex relations are found.2

As a first approximation for both tones and noise, the effective intensity of short
sounds is a function of total energy integrated over the duration of the sound. More

1 G. A. Miller, Sensitivity to Changes in the Intensity of White Noise and Its Relation
to Masking and Loudness, J. Acoust. Soc. Am. 19, 609-619 (1947).

2 8. 8. Stevens, ed., ‘“Handbook of Experlmental Psychology, ' pp. 1020-1021, John
Wiley & Sons, Inc., New York, 1951. .
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accurately, the threshold is defined by!
' I, = kIt 3k-1)

For some short tones and for many types of impulse noise, account must be taken of
the frequency distribution of energy. Inasmuch as the ear varies in sensitivity as a
function of frequency, any change in the shape or duration of a short acoustic pulse
will also change its effectiveness because of the altered spectral composition.

8k-8. Loudness. Loudness and pitch are ways in which a listener reacts to sounds.
Furthermore, within limits, a listener can use numbers to describe how much of a
response he makes to the sound. These numbers usefully describe how loud, or how
high in pitch, a sound seems to be. It is then necessary to relate how loud it is (sub-
jective response) to how intense it is in physical terms. The loudness of a pure tone
of 1,000 cps is described by the following relationship:

log L = 0.0301N — 1.204 (3k-2)

in which L is the loudness measured in sones and N is the loudness level in phons
(equal to the sound pressure level of the tone in decibels above 0.0002 dyne/cm?).?
Another way of putting this is to say that loudness doubles for each 10-db change in
sound pressure level. '

TaBLE 3k-7. LoupNEss LEVEL AS A FuNcTiON OF SOUND PRESSURE LEVEL
AND FREQUENCY*

Sound pressure Frequency

level ‘ A
125 250 500 1,000 | 2,000 | 4,000 | 8,000 | 10,000

L ) O I 10.0 | 18.0| 18.0
20 | ... 6.3 16,0 20.0| 28.0| 28.0 | 11.0

30 40 18.0| 26.5] 30.0| 37.0| 36.5| 20.5| 17.0
40 17.0| 31.0| 38.5{ 40.0| 45.5| 45.0| 29.5| 26.0
50 34.0| 45.5| 52.0| 50.0| 55.0| 54.0| 38.0| 35.0
60 52.0| 59.5| 64.5| 60.0| 64.0| 63.5| 47.0| 43.5
70 70.0 | 72.5| 76.0| 70.0| 73.5| 72.5| 56.0| 53.5
80 8.0 8.5| 8.0| 8.0 | 84.5| 83.0| 66.0| 63.5
90 98.0| 95.5| 96.0| 90.0| 95.0| 94.5| 77.0| 73.5
- 100 108.0 | 105.5 | 105.0 | 100.0 | 106.0 | 106.0 | 88.0 | 85.5
110 118.0 | 115.5 | 113.0 | 110.0 | 117.0 | 117.5 | 101.5 | 98.0

* American Standard for Noise Measurement, ASA 724.2—1942,

There is some evidence that the loudness of a noise grows more rapidly than that
of a tone with an increase in sound pressure level, especially at low levels. The exact
relations are less well known than those for a tone.

The loudness of tones at other frequencies than 1,000 cps is given by determining
the loudness level in the manner described below and converting to tones by Eq. (3k-2).

8k-9. Loudness Level. The loudness level of a tone of 1,000 cps, expressed in
phons, is defined as the sound pressure level in decibels above the reference level of
0.0002 dyne/cm?.

The loudness level of tones of other frequencies is given by the empirical relations in
Table 3k-7.

1D. B. Yntema, ‘“The Probability of Hearing a Short Tone Near Threshcld,’”” Ph.D.

Dissertation, Harvard University, 1954, 43 pp.
2 8. S. Stevens, The Measurement of Loudness, J. Acoust. Soc. Am. 27, 815-329 (1955).
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 Note that this table is based on the ASA standard and presumes the “free-field”’
measurement of sound pressure. This requires a measurement of a plane progressive
wave at the listener’s position before the listener is placed in the field. More meaning-
ful measurements would doubtless be obtained from pressure measurements at the
ear. For this purpose, apply the corrections contained in Table 3k-3¢ to the ear canal
pressures before entering Table 3k-7.

To enter the table with sound pressure levels measured under other conditions, first
add the corrections in Table 3k-3¢, then subtract rather than adding corrections in
Tables 3k-3a through 3k-3d. Note, however, that corrections given for presbycusis
in Table 3k-3e¢ may give quite misleading results because of recruitment at high
frequencies in some elderly people.

8k-10. Pitch. The relation between frequency and the subjective magnitude of
perceived pitch is shown by Table 3k-8. By definition, the pitch of a tone of 1,000 cps
at 40 db SPL is 1,000 mels.!

TaBLE 3k-8. PircH oF A PURE Tong, IN MELs, As A FuncTioN oF FREQUENCY

Frequency | Mels | Frequency Mels Frequency Mels
20 0 - 350 460 1,750 1,428
30 24 400 508 2,000 1,545
40 46 500 602 2,500 1,771
60 87 600 690 3,000 1,962
80 126 700 775 3,500 2,116

100 161 800 854 4,000 2,250
150 237 900 929 5,000 2,478
200 301 1,000 1,000 6,000 2,657
250 358 1,250 1,154 7,000 2,800
300 409 1,500 1,296 10,000 3,075

3k-11. Localization of Sound. The localization of complex sounds is primarily a
function of time differences of arrival at the two ears, and, to a first approximation,
such differences may be calculated by assuming the ears on either end of the diameter
of a sphere of 7.5 cm radius.

The localization of tones of low frequency (below 1,500 cps) is possible on the basis
of phase differences, which may be interpreted in terms of time differences. d

The localization of tones of high frequency is possible on the basis of intensity
differences resulting from the sound shadow of the head. Exact measurements here
are difficult at best. ‘

Sound localization is greatly aided when the head or body can be rotated, or moved
about, in the sound field, while the observer hears the appropriate sequence of sounds.?

Sound localization in reverberant rooms or with so-called “stereophonic-sound
sources”’ depends critically upon a “‘precedence effect,” by which the localization
determined by the primary sound or sound from the nearer of two sound sources ig
overriding in its effect.?

In experiments where time differences are used to balance out intensity differences

1 8. 8. Stevens and J. Volkmann, The Relation of Pitch to Frequency: a Revised Scale,
Am. J. Psychol. 63, 329-353 (1940). -

2 H, Wallach, Ueber die Wahrnehmung der Schallrichtung, Psychol. Forsch. 22, 238-266
(1938). .

$ H. Wallach, E. B. Newman, and M. R. Rosenzweig, The Precedence Effect in Sound
Localization, Am. J. Psychol. 62, 313-336 (1949). .
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in the opposite direction, 1.0 X 1075 sec priority offsets a 6-db difference in intensity;
2.3 X 1075 sec offsets a 14-db difference in intensity between the two ears.!

3k-12. Speech Power. The total radiated speech power, averaged over a 15-sec
interval for a sample including both men and women at conversational levels used for
telephone talking, has been estimated as 32 microwatts.

When measured at the face of a telephone transmitter, this power produces the
sound pressure levels given in Table 3k-9 for different distances from the mouth of the
speaker.?

TaBLe 3k-9. AvERAGE SoUND PRESSURE LEVEL PropuckEp BY CONVERSATIONAL
SPEECH AS A FuNcTioN oF DisTANCE FRoOM Lips To MICROPHONE

Distance, cm

Touching| 0.5 | 1.0| 2.5 5.0 | 10.0 | 25.0 | 50.0 | 100.0

Sound pressure level....... 104 102 |99 |95 |90} 8 | 78 | 72 | 66

A second source of variability lies in the essentially statistical distribution of speech
power in time. If speech power is measured in successive §-sec intervals (a time
slightly shorter than a syllable, and slightly longer than a phoneme), a distribution is
obtained with the mean values given in Table 3k-9 and variability that can be
attributed to time sampling equal to a standard deviation of 7.0 db.? The distribution
is badly skewed so that the value 7.0 db indicates only a rough order of magnitude.
The variability -is also greater when particular frequency bands are measured.

A third source of variability is the variation in effort expended by the person who is
talking. As a rough approximation, a raised voice level is 6 db above conversational
level, the loudest level that.can be maintained is 12 db above conversational level, and
the loudest shout is 18 db above conversational level. In the other direction, a
whisper may be 20 db below conversational level.

1J. H. Shaxby and F. H. Gage, Studies in the Localization of Sound. A. The Localiza-
tion of Sounds in the Median Plane: An Experimental Investigation of the Physical
Processes Concerned, Med. Research Council (Brit.) Spec. Rept. Ser. no. 166 (1932), 32 pp.

2 M. H. Abrams, S. J. Goffard, J. Miller, F. H. Sanford, and 8. S. Stevens, The Effect
of Microphone Pos1t10n on the Intelligibility of Speech in Noise, OSRD Rept. 4023 (1944),
16 pp.

3H. K. Dunn and S. D. White, Statlstlcal Measurements on Conversational Speech,
*J. Acoust. Soc. Am. 11, 278-288 (1940).
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TaABLE 3k-10. CHARACTERISTICS OF SOUNDS IN GENERAL AMERICAN SPEECH

Power,* db re Relative
Symbol |Example| long time frequency of .
averagef sound, %1

w ~ cool +0.6 1.60
U cook. - +2.3 0.69
o cone +2.5 :0.33
b - talk +4.1 1.26
0 clothy) - 4 2.81

a , cglm} +3.7 {0.49}
a ask

® l_)at] +2.5 | 3.95

e bet +1.6 3.4
e tape +1.4 1.84

I bit 0.0 . 8.53

i beet - 0.0 2.12
o bird —-0.5 0.53

9 s;f_a ..... 4.63
A bl_m +2.9 2.33
el laid +1.4 see e
a1 bite +2.5 1.59
ju ‘you +0.6 0.31
ou | soap +2.5 11.30
avu about +2.3 0.59
o1 boil +3.0 0.09

Formant frequencies
for men and women 9

First Second Third
M|IW| M w M w
300(370| 870 950|2,240/2,670
440(470(1,020|1,160|2,240{2, 680
500(...] 820
570|590 840{ 920(2,410|2,710

730|850]1,090(1,220|2,440/2, 810

660(860|1,720/2,050;2,410|2, 850
530/610(1,840i2,330(2,480/2,990
390(430(1,990|2,480{2,550|3,070
270(310(2,2902,790/3,010,3,310
490/500|1,350(1,640(1,690(1,960

640(760(1,190|1,400(2,390(2,780

* The power measurements do not represent the peak instantaneous power but the average over the

sustained portion of the phoneme where such a period can be defined.

In this case, as with the formant

frequencies, the absolute values are highly variable, but intercomparisons among the various sounds are

generally more reliable.

t H. Fletcher, ‘‘Speech and Hearing in Communication,” p. 86, D. Van Nostrand Company, Inec.,

New York, 1953.

1 G. Dewey, ‘ Relative Frequency of English Speech Sounds,”” Harvard University Press, Cambridge,

Mass., 1923.

4 E. G. Riehardson, ed., ‘** Technical Aspects of Sound,” pp. 215-217, Elsevier Press, Inc., New York,

1953.
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TaBLE 3k-10. CHARACTERISTICS OF SOUNDS IN GENERAL
AMERICAN SPEECH (Continued)

Formant frequencies

Power, * db Relative for men and women Y
Symbol | Example | re long time | frequency of

averaget | sound, %1 | gt | Second | Third [Fourth
1 lip -3.0 3.74 450 1,000 |2,550|2,950
m me -5.8 2.78 140 | 1,250 |2,250|2,750
n Eip —-7.4 7.24 140 1,450 |2,300|2,750
] sin_g —4.4 0.96 140 2,350 |2,750| -
w we 0.0 2.08
T E‘_ip —-1.0 6.35 500 1,350 |1,850]3,500
j yes 0.0 0.60 270 2,040
p pie —15.2 2.04 . 800 | 1,350
t t_ie —11.2 7.13 L. 1,700 | 2,450
k . k_ey —11.9 2.71 ... | Variable
b Ey —~14.6 1.81 140 800 | 1,350
d die —14.6 4.31 140 | 1,700 | 2,450
g guy —11.2 0.74 140 | Variable
v Zie —-12.2 2.28 140 1,150 |2,500]| 3,650
f foe 216.0 1.84 .. | 1,150 |2,500|3,650
6 thin —923.0 0.37 1,450 | 2,550
s then 12 6 3.43 140 | 1,450 |2,550
8 §ip —~11.0 4.55 2,000 | 2,700
z is —11.0 2.97 140 | 2,000 |2,700
§ shy —4.0 0.82 ... | 2,150 |2,650
3 measure | —10.0 0.05 140 | 2,150 | 2,650
h hit ~13.0 1.81
t§ chop —-6.8 0.52
d3 Joe 9.4 0.44

* The power measurements do not represent the peak instantaneous power but the average over the
sustained portion of the phoneme where such a period can be defined. In this case, as with the formant
frequencies, the absolute values are highly variable, but intercomparisons among the various sounds are

generally more reliable.
1 H. Fletcher, “Speech and Hearing in Communication,” p. 86, D. Van Nostrand Company, Inec.,

New York, 1953. .
1 G. Dewey, “ Relative Frequency of English Speech Sounds,”” Harvard University Press, Cambridge,

Mass., 1923.
€ E. G. Richardson, ed., * Technical Aspects of Sound,” pp. 215-217, Elsevier Press, Inec., New York,

1953.

8k-14. Articulation Index. The articulation index is a set of numbers that makes
possible the prediction of the efficiency of some types of voice-communication systems
by the addition of suitably chosen values. The operations involve (1) dividing the
speech spectrum into a series of bands having an equal possible contribution AA to the
total efficiency, and (2) determining what proportion of the A4 each band will con-
tribute under the particular noise and speech conditions being tested.
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Under (1) it is customary to use no more than 20 such bands. The frequency limits
of 20 such bands are given in Table 3k-11,

TaBLE 3k-11. TWENTY FREQUENCY BANDS CONTRIBUTING EqQuaLLY TO
EFrrFiciENcYy oF SPEEcH COMMUNICATION *

Band Frequency Band | Frequency | Band Frequency
No. range No. range No. range

1 395 8 1,250-1,425 15 2,930-3,285
2 395-540 9 1,425-1,620 16 3,285-3,700
3 540-675 10 1,620-1,735 17 3,700-4, 200
4 < G76-810- - .| 11 1,735-2,075 18 4,200-4,845
5 810-950 12 2,075-2,335 19 4,845-5,790
6 950-1,095 13 2,335-2,620 20 5,790

7 1,095-1,250 14 2,620-2,930

Y‘* H. Fletcher, “Speech and Hearing in Communication,” D. Van Nostrand Company, Inc., New
ork, 1953. \ ) :

For conditions where substantial wide-band noise is present, the second requirement
may be approximated by the formula

wi = 55(S; — N; + 6) ' (3k-3)

in which w; is a weight having a maximum value of 1.0, 8; is the signal level in band
in decibels, N; is the noise level in the same band i in decibels referred to the same
base ag S;.!

TABLE 3k-12. ARTICULATION SCORES AS A FUNCTION OF ArRTICULATION INDEX*

Articulation CvC Monosyllabic
index syllables, % | words (PB lists), 9%
0.10 7 7
0.20 22 22
0.30 38 40
0.40 55 61
0.50 68 77
0.60 79 87
0.70 87 93
0.80 93 96
0.90 96 98
1.00 98 99

AN

* E. G. Richardson, ed., *“ Technical Aspects of Sound,” Elsevier Press, Inc., New York, 1953.

The articulation index 4 is then described by the summation
1 i=n
a-1 2 ws (3k-4)
1=1

Articulation scores are related to the articulation index according to the Table
3k-12.

IN. R. French and J. C. Steinberg, Factors Governing the Intelligibility of Speech
Sounds, J. Acoust. Soc. Am. 19, 90-119 (1947).



31. Classical Electro—dynamical Analogiés

HARRY F. OLSON
'RCA Laboratories

Analogies are useful when it is desired to compare an unfamiliar system with one
that is better known. The relations and actions are more easily’ visualized, the
mathematics more readily applied, and the analytical solutions more readily obtained
in the familiar system. Analogies make it possible to extend the line of reasoning into
unexplored fields. In view of the tremendous amount of study which has been
directed toward the solution of circuits, particularly electric circuits, and the engineer’s
familiarity with electric circuits, it is logical to apply this knowledge to the solutions
of vibration problems in other fields by the same theory as that used in the solution of
electric circuits. The objective in this section is the establishment of analogies
between electrical, mechanical, and acoustical systems. v

" '81-1. Resistance. Electric Resistance. Electric energy is changed into heat by the
passage of an electric current through an electric resistance. Electric resistance Rz,
in abohms, is defined as ‘

Rz = (31-1)

Sae

where e = voltage across the electric resistance, abvolts
i = current through the electric resistance, abamp
Mechanical Rectilineal Resistance. Mechanical rectilineal energy is changed into
heat by a rectilinear motion which is opposed by mechanical rectilineal resistance
(friction). Mechanical rectilineal resistance (termed mechanical resistance when
there is no ambiguity) Ra, in mechanical ohms, is defined as

_Ju
Rm = o (31-2)
where fu = applied mechanical force, dynes
u = velocity at the point of application of the force, cm /sec
Mechanical Rotational Resistance. Mechanical rotational energy is changed into
heat by a rotational motion which is opposed by a rotational resistance (rotational
friction). Mechanical rotational resistance (termed rotational resistance when there
is no ambiguity) Rz, in rotational ohms, is defined as

Re = ‘%R (31-3)

where fz = applied torque, dyne-cm
Q.= angular velocity about the axis at the point of the torque, radians/sec
Acoustic Resistance. Acoustic energy is changed into heat either by a motion in a
fluid which is opposed by acoustic resistance due to a fluid resistance incurred by
viscosity or by the radiation of sound. Acoustic resistance Ry, in acoustical ohms, is
defined as
3-134
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' ’R,A = (31-4)

P
: : U
where p = pressure, dynes/sq cm
U = volume velocity, cu cm /sec
81-2. Inductance, Mass, Moment of Inertia, Inertance. Inductance. Electro-
magnetic energy is associated with inductance. Inductance is the electric-circuit
element that opposes a change in current. Inductance L, in abhenrys, is defined as

di ,
| | =L 7 (31-5)
where e = voltage, emf, or driving force, abvolts
% = rate of change of current, abamp /sec

Mass. Mechanical rectilineal inertial energy is associated with mass in the mechan-
ical rectilineal system. Mass is the mechanical element which opposes a change in
Veloclty Mass m, in grams, | is deﬁned as

du
fu = mea :(31-6)

du .
where rri acceleration, cm /sec /sec

fu = driving force, dynes -
Moment of Inertia. Mechanical rotational energy is associated with moment. of
inertia in the mechanical rotational system. Moment of inertia is the rotational
element which opposes a change in angular velocﬂ;y Moment of inertia I, in gram
(centimeter)?, is defined as

. de
fr I U 31-7)
where @ = angular acceleration, radians/sec /sec ’

dt
' fr = torque, dyne-cm

Inertance. Acoustic inertial energy is associated with inertance in the acoustic
system. Inertance is the acoustic element which opposes a change in volume velocity.
Inertance M, in grams per (cent,lmeter)4 is defined as

=M g_l[ C @31-8)

where %(tz = rate of change of volume velocity, cu cm /sec/sec

p = driving pressure, dynes/sq cm ,
81-8. Electric Capacitance, Rectilineal Compliance, Rotational Compliance,
Acoustic Capacitance. Electric Capacitance Electric capacitance is associated with
capacitance. Electric capacitance is the electric-circuit element which opposes a
change in voltage Electric capacitance Cg, in abfarads, is defined as -

de
= Cg p7 (31-9)
=1 Q
¢ =0 rdt = Cx (31-10)
where @ = charge on the electrical capacitance, abcoulombs
e = emf, abvolts

Rectilineal Compliance. = Mechanical rectilineal potential energy is associated with
the compression of a spring or compliant element. Rectilineal compliance is the
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mechanical element which opposes a change in the applied force. Rectilineal com-
pliance (termed compliance when there is no ambiguity) Cu, in centimeters per dyne,
is defined as

fu=—é; - (31-11)

where z = displacement, cm
fu = applied force, dynes
Rotational Compliance. Mechanical rotational potential energy is assocmted with
the twisting of a spring or compliant element. Rotational compliance is the mechani-
cal element that opposes a change in the applied torque. Rotational compliance Chr,
in radians per centimeter per dyne, is defined as

_ ¢ . ‘ ' )

where ¢ = angular displacement, radians
fr = applied torque, dyne-cm
Acoustic Capacitance. Acoustic potential energy is associated with the compresswn
of a fluid or a gas. Acoustic capacitance is the acoustic element which opposes a
change in the applied pressure. The acoustic capacitance Cy4, in (centimeters)® per
dyne, is defined as
_ X
" Ca
where X = volume displacement, cu cm
= pressure, dynes/sq cm
31-4. Representatxon of Electrical, Mechanical Rectilineal, Mechamcal Rotational,
and Acoustical Elements. Electrical, mechanical rectilineal, mechanical rotational,

(31-13)

R
R
Rg Ra Rm
IIIIIII
e AVAVAY = - @l
| #07.0.94} )
L M m S
| ezzzzza
(@
—— i A= =@
' , RECTILINEAL ROTATIONAL
ELECTRICAL - ACOUSTICAL MECHANICAL

Fia. 31-1. Graphical representation of the three basic elements in electrical, mechanical
rectilineal, mechanical rotational, and acoustical systems.

and acoustical elements have been defined in the preceding sections. Figure 31-1
illustrates schematically the three elements in each of the four systems.

The electrical elements, electric resistance, inductance, and electric capacitance are
represented by the conventional symbols

Mechanical rectilineal resistance is represented by sliding friction which causes
dxss1pat10n Mechanical rotational resistance is represented by a wheel with a sliding-
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friction brake which causes dissipation. Acoustic resistance is represented by narrow
slits which causes dissipation due to viscosity when fluid is forced through the slits.
These elements are analogous to electric resistance in the electrical system.

Inertia in the mechanical rectilineal system is represented by a mass. Moment of
inertia in the mechanical rotational system is represented by a flywheel. Inertance
in the acoustical system is represented as the fluid contained in a tube in-which all the
particles move with the same phase when actuated by a force due to pressure. These
elements are analogous to inductance in the electrical system.

Compliance in the mechanical rectilineal system is represented as a-spring. Rota-
tional compliance in the mechanical rotational system is represented as a spring.
Acoustic capacitance in the acoustical system is represented as a volume which acts
as a stiffness or spring element. These elements are analogous to electric capacitance
in the electrical system. :

Table 31-1 shows the quantities, units, and symbols in the four gystems.

81-6. Description of Systems of One Degree of Freedom. An electrical, mechanical
rectilineal, mechanical rotational, and acoustical system of one degree of freedom are
shown in Fig. 31-2. In one degree of freedom the activity in every element of the

L Rg
rm’o‘o‘\——/\/\/\,l X Cm
C .
E
: T e

ELECTRICAL RECTILINEAL .
8-
[ x
m ¢ Cr -
— N
PM S Ca \ fo FREQUENCY
N R
AT R
ACOUSTICAL ROTATIONAL
MECHANICAL

F1a. 31-2. Electrical, mechanical rectilineal, mechanical rotation, and acoustical systems of
one degree of freedom and the current, velocity, angular velocity and volume velocity
response characteristics.

system may be expressed in terms of one variable. In the electrical system an electro-
motive force ¢ acts upon an inductance L, an electric resistance Rg, and an electric
capacitance Cg connected in series. In the mechanical rectilineal system a driving
force fu acts upon a particle of mass m fastened to a spring of compliance Cy and
sliding upon a plate with a frictional force which is proportional to the velocity and
designated as the mechanical rectilineal resistance Ry. In the mechanical rotational
system a driving torque fz acts upon a flywheel of moment of inertia I connected to a
spring or rotational compliance Cr and the periphery of the wheel sliding against a
brake with a frictional force which is proportional to the velocity and designated as
the mechanical rotational resistance Rz. In the acoustical system, an impinging
sound wave of pressure p acts upon an inertance M and an acoustic resistance Ra
comprising the air in the tubular opening which is connected to the volume or acous-
tical capacitance C4. The acoustic resistance R, is due to viscosity. .

The differential equations describing the four systems of Fig. 31-2 are as follows:
Electrical

Lj + Rug + c% = Beiot (31-14)

P
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Mechanical rectilineal

mé + Ru® + g— = Fyeiot (31-15)
M
Mechanical rotational
1é + Red + g; = Fgeiot (31-16)
Acoustical )
MX + RaX + C—X; = Peivt , (31-17)

E, Fu, Fg, and P are the amplitudes of the driving forces in the four systems.
Eeivt = ¢, Fyei®t = fy, Frei®t = fr and Pe/®t = p.
The steady-state solutions of Egs. (31-14) to (31-17) are:

Electrical , :
. . " _ Eeiot _ _6:_ ’
4=1= g jol — G/aCr) _ Zs (31-18)
Mechanical rectilineal
L Ffj“" _ _fl ;
2= R T jom — G/aCa) _ Zu (31-19)
Mechanical rotational ‘
- Feiot _Jz
¢ = Re ¥ jol — (j/wCr)  Zr (31-20)
Acoustical
- . Peiwt _ P ’
X = R4 + joM — (j/wCa) Za @l-21)
The vector electric impedance is ,
- ol — R
‘ Zg = Rg +ij( wCE (31 22)
The vector mechanical rectilineal impedance is
_ com — 3 ‘ -
ZM = RM +_7wm wCM (31 23)
The vector mechanical rotational impedance is
Zr = Rg + joI — (.,]TR o (31-24)
The vector acoustic impedance is
Rk joM — - ]
Za = Rait joM - +Ca | (31-25)
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TaBLE 3l-1. QuanTITIiES, UNITS, AND SYMBOLS FOR ELECTRICAL, MECHANICAL
RECTILINEAL, MECHANICAL ROTATIONAL, AND AcOusTICAL ELEMENTS

Electrical Mechanical rectilineal
Quantiy Unit SYm- | Quantity Unit | SYm-
bol bol
Electromotive _
force........ Volts X 108 e Force | Dynes m
Charge or Coulombs X 1071 Q Linear dis- Centimeters T
quantity . . o ..} placement - .
Current........ Amperes X 107! | ¢ Linear velocity | Centimeters Zoru
v . : . _ per second
Electric imped- | Ohms X 10° Zg Mechanical Mechanical Zy
ance . impedance ohms -
Electric resist- | Ohms X 10° Re Mechanical .| Mechanical Ry,
ance resistance ohms ,
Electric react- | Ohms X 10° Xk Mechanical Mechanical X
. ance. - v reactance ohms
Inductance. .. .| Henry X 10° L Mass Grams m.
Electric capaci- | Farads X 10~* | Cg Compliance Centimeters Cu
tance . : per dyne
Power......... Ergs per second | Pg Power Ergs per second| Py
. Mechanical rotational Acoustical
. . Sym- G . Sym-
Quantity Unit bol Quantity Umt bol
Torque. . ......| Dyne-centimeter | fz Pressure Dynes per P
’ square centi-
. v meter
Angular Radians ¢ Volume dis- Cubic centi- X
displacement placement meters .
Angular Radians per ¢ or Q| Volume Cubic eenti- XorU
velocity second velocity meters per
. , = ' second
Rotational Rotational ohms | Zp Acoustic Acoustic ohms | Z 4
impedance impedance
Rotational Rotational ohms | Rz Acoustic Acoustic ohms | R4
resistance T resistance
Rotational . Rotational ohms | Xz Acoustic Acoustic ohms | X4
reactance , reactance
Moment of - (Gram) (centi- I Inertance | Grams per M-
inertia meter)? (centimeter)+
Rotational | Radians per dyne | Cp Acoustic (Centimeter)s | (Cy4
" compliance per centimeter capacitance per dyne .
Power.........| Ergs per second | Pp Power Ergs per second| P,

1




3m. The Mobility and Classical Impedance Analogies!

FLOYD A. FIRESTONE

Editor, The Journal of the Acoustical Society of America

8m-1. Introduction. An analogy is a recognized relationship of consistent mutual
similarity between the equations and structures appearing within two or more fields
of knowledge, and an identification and association of the quantities and structural
elements which play mutually similar roles in these equations and structures, for the
purpose of facilitating transfer of knowledge of mathematical procedures of analysis
and behavior of the structures between these fields. '

The theory of analogies is still developing, as evidenced/by the recent publications
of Olson, Raymond, Bloch, Trent, Le Corbeiller, Bauer, Beranek, and others (see
references on page 3-177). This section sets forth the author’s recommendations for a
useful problem-solving technique as presented in his,paper, 'Twixt Earth and Sky
with Rod and Tube, J. Acoust. Soc. Am. 26, 140 (1954) (abstract only).

Instead of drawing an analogous electric circuit, the author recommends that
mechanical and acoustical schematic diagrams be drawn, utilizing the mechanical
and acoustical symbols shown below. Such a schematic diagram can be drawn
directly from an inspection of the structure and is a record of our determinations of
the functions and connections of its parts. The mechanical and acoustical symbols
here presented are distinctive but similar to their electrical analogues so that their
shape indicates to one familiar with electrical schematics the algebraic operations
which are to be performed in the analysis. Then the problem is golved using mechan-
ical or acoustical units. _Even if an analogous electric circuit is drawn, there is'ad-
vantage in understanding in detail the mechanical or acoustical analogue of each
straight line, junction, and element on the diagram, as set forth in the mobility and
impedance analogy tables which follow. _ ; :

Schematic diagrams based on analogies are most useful in solving those mechanical
and acoustical problems where it is known at the outset that the parts are constrained
to move in one line only. Problems involving several degrees of freedom for each
mass require the construction of a separate schematic diagram for each degree of
freedom, usually with coupling between these diagrams.

In the mobility analogy, mechanical mobility (complex velocity amplitude divided
by complex force amplitude) is analogous to electric impedance, velocity to voltage,
and foree to current. In the impedance analogy, mechanical impedance is analogous
to electric impedance, force to voltage, and velocity to current.

3m-2. Wires, Rods, and Tubes. In an electric circuit, connections between
distant terminals are made by slim wires which, when idealized on a schematic
diagram, are assumed to be free of inductance, resistance, and capacitance to ground.
Ofttimes a number of wires are soldered together to form a (soldered) junction which

1 The author wishes to acknowledge with pleasure many interesting and instructive
conversations on this subject, as well as a voluminous correspondence, with Dr. Horace M.
Trent.
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ensures equal voltages at all the terminals connected by the tree of wires. But it
will also be useful to introduce the isocurrent junction (or electric mesher) which
ensures equal currents in all the wires coming to it; structurally it is a set of similar
ideal transformers with one side of each primary grounded and all secondaries con-
nected in series, the schematic symbol being abbreviated to that of a junction
with a circle around it indicating the series of secondaries. The isocurrent junction
is the electric example of that broad class of junctions which we shall call “meshers”’
because they have the effect of connecting all the attached circuits into the same
mesh. : : =

In a meechanical system, on the other hand, the connections between distant moving
terminals are in practice made by either or both of two ‘“slim”’ devices, rods or tubes.
Ideally, the rods are free from mass, friction, or compliance. Ideally the hydraulic
tubes are held stationary and are filled with ideal fluid free from mass, viscosity, or
compressibility. Ofttimes a number of rods are bolted together to form a rigid
Junction which ensures equal velocities of all the terminals connected by the tree of
rods. Also, ofttimes a number of tubes are joined in a small common chamber to
form a hydraulic junction which ensures equal pressures (and forces if all tubes are
of the same area) at all the terminals connected by the tree of tubes. However, rods
can be joined in a hydraulic junction which will ensure equal forces in the rods, if the
rods are provided with equal-area pistons hydraulically connected. Similarly, by
means of connected pistons, tubes can be joined in a rigid junction.

Since mechanical systems are customarily connected by two kinds of slim devices
(rods and tubes) while electric systems are connected by only one kind of slim device
(wires), it is not possible in general to draw a correct schematic diagram by either
the mobility or impedance analogies alone which will correspond completely to the
apparent geometry of the mechanical structure. A mobility schematic is a rod
diagram (each straight line represents a rod), and it will correspond with the geometry
of all parts of the mechanical structure which are rigidly connected by rods. An
impedance schematie is a tubing diagram (each connecting line represents a hydraulic
tube), and it will correspond with the geometry of all parts of the mechanical structure
which are hydraulically connected by tubes.

8m-8. Ground, Earth, and Sky. In a mobility schematic or.rod diagram, the
reference symbol which is analogous to the ground symbol in an electrical wiring
diagram is a frame of reference called the earth, whereas in an impedance schematic
or tubing diagram the reference symbol is a force (or pressure) of reference called
the sky. The sky is the dual of the earth. Structurally, the sky consists of a bowl,
a lake, or an atmosphere of ideal fluid maintained under a constant pressure of
reference. In a mobility schematic or rod diagram one terminal of every mass is the
earth relative to which the velocity of the mass is measured, while in an impedance
schematic or tubing diagram one terminal of every spring is the sky relative to which
the force in the spring is measured; these concepts are necessary in order that either
type of schematic diagram may be drawn by inspection. The earth has zero mobility
and infinite mass, while the sky has zero impedance and infinite compliance. ;

3m-4. Analogues of the Condenser and the Capacitor. In addition to the mechani-
cal analogues of the inductor and the resistor, the analogues of two classes of capacitive
elements must be considered, which we shall distinguish by the names condenser
and capacitor. The condenser is the parallel-plate device which can be connected
either in a high wire or to ground, while the capacitor is typified by the isolated sphere
in free space as discussed in electrostatics, one terminal only being free while the
other terminal is permanently grounded.

In the mobility analogy, every mass is analogous to the capacitor, not the con-
denger, in the sense that one terminal of the mass is the body of the mass while the
other terminal is always the earth relative to. which the velocity of the mass is meas-

.

-
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ured. It is this drawing of an earth symbol near each mass which makes closed
circuits in a mobility schematic and permits the drawing of a correct rod diagram of
any rod-connected system in a straightforward intuitive manner. There is also an
unusual structure called a transinertor which is a combination of two masses and a
mesher, and which is analogous to the condenser; it can be connected exther in series
w1th the high rod or to ground. :

" In the impedance analogy, every spring is analogous to the capa,mtor, not the con-
denser, in the sense that one terminal of the spring is the body of the spring while
the other terminal is always the sky relative to which the force of the spring is meas-
ured. Tt is this drawing of a sky symbol near each spring which makes closed circuits
in an impedance schematic and permits the drawing of a correct tubing diagram of
any tube-connected system in a straightforward intuitive manner.

8m-5. The Dotted Arrow. Alongside each rod diagram is drawn a dotted arrow,
usually toward the right, which indicates the direction of motion which is considered
positive. ‘This is analogous to marking the plus and minus signs on our voltmeters.
A solid arrow superimposed on a rod indicates the direction in which impulse is
flowing, such as would increase the momentum of a mass in the direction of the dotted
arrow. If the solid arrow is in the direction of the dotted arrow, the rod is in com-
pression; if the arrows are in opposite directions, the rod is in tension; if the arrows
are at right angles, the rod is in shear. In a rotational system, the rotational velocity
is considered positive if it is clockwise when looking in the direction of the dotted
arrow placed beside the rotational schematic diagram; a solid arrow superimposed
on a shaft then indicates the direction of flow of torsional impulse such as would
increase the positive angular momentum of any inertor into which it flows.

In a tubing diagram only the solid arrow is used, superimposed on a tube. It
indicates the direction of positive fluid velocity or volume velocity.

8m-6. Rationale of the Schematic Symbols Proposed for the Elements. In both
analogies, the mechanical and acoustical schematic symbols are similar in appearance
to their analogous electrical symbols On a rod diagram, the symbols for a mechanical
sprmg and responsor have 13 “wiggles,” the acoustic elastor and responsor have
2% wiggles, the torsional spring and responsor have 23 wiggles but are tapered, while
the electrical inductor and resistor have 33; wiggles as usual. Similarly a torsional
inertor is tapered.

On an impedance schematic, the symbols are similar to those for the mobility
schematic though dual in meaning, and each impedance schematic symbol has a
line drawn beside it.

8m-7. Method of Drawing Schematic Diagrams. (1) Choose your analogy,
either for life or for the problem at hand, remembering that the mobility analogy
is the most convenient for rod-connected systems while the impedance analogy is the
most convenient for hydraulic tube-connected systems. (2) Identify the functions
performed by each part of the given structure. (3) Choose the schematic symbols
which represent these functions. (4) Identify the terminals of each element, coupler,
and vibrator of the structure. (5) Connect in the schematic diagram by means of
appropriate connectors and rigid or hydraulic junctions those terminals which are
connected in the structure.

The identification of the terminals of each element will include the assignment of the,
earth symbol as one terminal of each mass in a mobility schematic or rod diagram,
or the assignment of the sky symbol as one terminal of each spring in an impedance
schematic or tubing diagram; this will result in closed meshes and correct series and
parallel connections in each diagram.

A single hydraulic tube fitted with pistons at its two ends (of equal areas for mechani-
cal systems but not necessarily equal for acoustic systems) performs the same func-
tions as a rod; so both rod and tube may be represented by a straight line and are
interchangeable in a series. It is where several rods join, or tubes join, that there



THE MOBILITY AND CLASSICAL :IMPEDANCE ANALOGIES 3-143

is a difference of function, a rigid junction of :rods ensuring equal velocities while a
hydraulic junction of tubes ensures equal forces or sound pressures. Either analogy
may therefore be used for diagraming a system connected by rods and/or tubes by
first determining whether a given structural connection performs the function of a
rigid junction ‘or of a hydraulic junction, then designating by means of the symbols
below whether - e connection constitutes a simple junction (analogous to a soldered
junction of wires) or a mesher (analogous to the isocurrent junction mentioned in
Sec. 3m-2). That analogy will be best for a given problem which brings in a mini-
mum number of meshers with which we are not so familiar. Thus the mobility
analogy will be best for rod—connected systems and the impedance analogy best for
tube-connected systems.

3m-8. Types of Schematic Diagram. 1. The mobility schematic diagram or rod
diagram. Because most mechanical systems are rod-connected and have no tubes, a
mobility schematic diagram or rod diagram will be most convenient and can usually
be drawn by inspection of the structure, using the mobility-analogy symbols given
on left pages. Even an acoustic system of the kind where there are no side branches
and the elements are of equal-cross-sectional areas and lie in a series, as when a piezo-
electric crystal radiates plane waves into a delay line, may be most conveniently
represented by a mobility schematic since the contact of the adjacent faces of the
elements ensures their equal volume velocities as if they were connected by acoustic
rods.

2. The impedance schematic diagram or tubing diagram. If we have a hydrau-
lically operated mechanical system which is tube-connected or an acoustic filter
connected by tubes with side branches, an impedance schematic or tubing diagram
will be most convenient and can be drawn by inspection using the impedance-analogy
symbols given on right pages, provided that the sky is introduced as one terminal of
each spring. - ' ' ST

3. The two-analogy schematic diagram. Complete correspondence between the
schematic diagram and the geometry of the structure can be obtained by diagraming
the rod-connected parts by the mobility analogy and the tube-connected parts by
the impedance analogy, appropriate couplers being indicated where rod and tube
portions adjoin. Using this technique, the schematic diagram of the system can
be drawn by inspection of the original structure, using the appropriate mechanical
or acoustical symbols given below, including the analogy connectors on page 3-176.

8m-9.- Mechanical Mobility z vs. Mechanical Admittance Y». Why should the
new term mechanical mobility z be introduced when it is of the same magnitude as the
established term mechanical admittance Y ?

Cros ¢ th h
—&Io—i while mechamcal admltta:nce Yu = 9 through,
P through P aeross

Thus while the magnitudes of the mechanical mobility and mechamcal admittance
are equal the words through and across are inverted in the definitions, because mobility
belongs in a rod-connected system and mechanical adm1ttance belongs in a tube-
connected system.

Mechanical mobility z is indigenous to a rod-connected system, and when a number
of springs or other elements are connected in series, the mobility of the combination
is the sum of the individual mobilities: z = 21 + 22 + 2;. It would be unanalogous,
though correct, to say that the mechanical admittance of the elements in series is
the sum of the individual mechanical admittances; this lack of analogy is avoided
by introducing with the rod diagram the new term mobility and having it associated
with the letter z. Mechanical admittance is indigenous to a tube-connected system
and the above-mentioned series of structural elements would turn out to be a parallel
combination of elements in -a fubing diagram; the mechanical admittance of the

Mechanlcg,l mobility z =

[Text continued on page 3-177; tables, over.]
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Symbols for Constructing Mechanical, Acoustical, and Electrical
Schematic Diagrams Based on the Mobility Analogy

Symbols for rod diagrams

Symbols for the
analogous
wiring diagrams

Rectilineal

Rotational

Acoustic systems

_ Electric circuits

mechanical systems | mechanical systems (preferably rigidly P refera:bly Vf'lth
connected) soldered junctions)

Connectors
1 rod 2 1 shaft 2 1 acoustic rod 2 1 wire 2

Ideal massless, in-
compressible, fric-
tionless rod, not
necessarily of uni-
form cross section,
which connects mov-
able terminals 1 and
2 so that

velocity

v; = v, and

force

F 1 = F 2
Propagation in any
type of ideal rod is
considered instan-
taneous

Ideal inertialess,
uncompliant, fric-
tionless shaft, not
necessarily of uni-
form cross section,
which connects mov-
able terminals 1 and
2 so that

angular velocity
Vr1 = Vp2 and
torque

F Rl = F R2

Ideal inertanceless,
uncompliant, fric-
tionless acoustic rod
which connects two
wavefronts 1 and 2,
not necessarily of
the same areas, by
any means which
function the same
as a pivoted lever
driving pistons 1
and 2 at lever arms

"| equal to the re-

ciprocal of the pis-
ton areas, so that
the volume velocity
U 1 = U2 a.nd

the sound pressure
D1 = P2

Frequent special
case, equal areas in
contact.

LA, =LA, =1
Prototypal structure
of acoustic rod

Ideal capacitance-
less, inductance-
less, resistance-
less wire, not
necessarily of
uniform cross
section, which
connects terminals
1 and 2 so that

voltage

E1 = Eg and
current

I 1 = I 2
Propagation in an
ideal wire is con-
sidered instanta-
neous
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THE IMPEDANCE ANALOGY (Classical Analogy)
Symbols for Construeting Mechanical, Acoustical, and Electrical
Schematic Diagrams Based on the Impedance Analogy

Symbols for tubing diagrams

Symbols for the
analogous
wiring diagrams

Rectilineal

Rotational

Acoustic systems

Electric circuits

. . (preferably tube- (preferably with
mechanical systems | mechanical systems connected) soldered junctions)
Connectors
1 tube 2 I tube 2 1 acoustic tube 2 1 wire 2
Stationary. tube of Stationary tube filled | Stationary tube, not |Stationary ideal,

unit area:of cross
section, filled with
ideal, massless, in-
compressible, invis-
cid fluid, often
terminating in unit- :
area pistons; or any
mechanism of equiv-
alent function.
Dead-end tubes are
closed unless con-
nected to sky.

It connects terminals
1 and 2 so that
force

F, = Fyand

velocity

¥V = ¥

with ideal fluid, and
having at every end

tdentical fluid motors’

for transducing lineal
fluid motion to rota-
tion of a solid or

| fluid member (exam-

ple, the Sperry Ex-
actor hydraulic con-
trol); or any mecha-
nism of equivalent
function.

It connects terminals
1 and 2 so that
torque

F Rl = F R2 and
angular velocity

Ur1 = Ur2

necessarily of uni- -
form cross section,.
filled with ideal

being sm4ll compared

{with the wavelength

in the actual medi-
um). The speed of
sound in an ideal
acoustic tube is in-
finite.

It connects terminals
1 and 2 so that
sound pressure

P1 = pe and

volume velocity

U 1 U 2

capacitanceless,
inductanceless, re-

| sistanceless wire,
fluid (tube diameter

not necessarily of
uniform cross
section.

| Propagation along

an ideal wire is
considered instan-
taneous.

It connects terminals
1 and 2 so that
voltage

E, = E; and
current,

I, =1
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Rectilineal Rotational .  Acoustic Electri
mechanical mechanical ectne
Symbols Indicating the Signs of the Variables
! r
+ »""’ VOT _;_ + -—> + ——> or .;_ +
Dotted arrow shows | Clockwise rotation v, | Dotted arrow shows | The 4 sign near

direction of positive
velocity v relative
to the earth.

Small arrow on rod
shows direction of
positive flow of

force F and impulse
Qu. If impulse flows

into a mass, its mo-

mentum in the direc-
tion of the dotted
arrow is increased.
Both arrows in the
same direction in-
dicates compression;
at right angles,
shear.

+ ———
compression

shear

B ———
tension

Rigid connector
offset

+ -~
L)

compression every-
where -
Flexible connector

| offset

looking in the direc-
tion of the dotted
arrow is positive
relative to the earth.

Small arrow on shaft
shows direction of

| positive flow of
torque Fr and tor-
sional impulse @x.

+ ==

(chain,
belt, or
gears,

1tol)

-,'—>‘—_
clockwise
torque

counter-
clockwise torque
Rigid connector

'clbckwise torque
everywhere

| Flexible shaft

1area (acoustic im-

|| Both arrows in the
| same direction in- . -
| dicates compression;
... | at right angles, '

- | shear. ,

| compression

rarefaction

1offset (rare)

{where

‘ small d/)\)

direction of positive
volume velocity U
relative to the
earth.

Small arrow. shows
direction of flow of
force per unit area
(sound pressure p)
and impulse per unit

pulse Q).

4 e——

——

shear

Rigid connector

+ ‘\\

compression every-

Flexible connector
(similar to tube of

|right

the wire indicates
a positive voltage
relative to ground.

| Arrow shows direc-
| tion of flow of

positive current I
and charge Q. -

+

current -
current
downward

—_—
current

|left

Offset connector

———*——
same as above

Offset connector
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Rectilin.eal Rotatiop al Acoustic Electric
mechanical mechanical
Symbols Indicating the Signs of the Variables
+ + + +

The + sign indicates
positive pressure in
the tube (relative

to the sky) and is
assumed to be asso-
ciated with positive
force F

The arrow shows the
direction of the veloc-
ity v (relative to

the tubing)

Rounded corners are
recommended for
tubes

Stationary tube with
bends; direction of
positive velocity v
and displacement s
is shown by arrows

The + sign indicates
positive pressure in
the tube (relative to
the sky) and is as-
sumed to be asso-
ciated with positive
torque Fp

The arrow shows the
direction of fluid
motion which is asso-
ciated with positive
clockwise angular
velocity vz

Ur

®tationary tube with
changes of direction;
positive clockwise
angular velocity vz
and angular displace-
ment sg are shown
by arrows

The + signindicates
a positive sound
pressure p (relative
to the sky, Po)

The arrow shows the
direction of a posi-
tive volume veloe-
ity U

Stationary tube with
bends; direction of
positive volume ve-
locity U and volume
displacement S, is
shown by arrows

The + sign indi-
cates a positive"

voltage (relative
to the ground)

The arrow shows the
direction of flow
of a positive his-
torical current I

Offset connector;
wire with bends;
direction of posi-
tive current I and
flow of charge @

is shown by arrows
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Rectilineal Rotational . )
‘mechanical mechanical Acoustic Electric

Simple junctions. The across variables are equal. The sum of the through variables
toward the junction is zero.

+ ——>
1 3
- SST—S—
2 4
L——

5
Rigid junction
(welded rods of any
cross-sectional area)

v, = ¥, = ete.
F\+F, -F, —F,
—F,r, = 0

+——>
——
1 3
B
2 4
e —

5
Rigid junction (1 to
1 gearbox with
shafts of any cross-
sectional area)

Vpy = Vg2 = ete.
Fri + Frs — Fgs
—Fry —Fprs =0

+ =3
e
1 3
2 4
L

5

| Rigid acoustic junc-

tion, connecting
wavefronts'1 to 5,

‘not necessarily of

equal areas, by any
means which func-
tions the sameasa
pivoted lever driving
pistons 1 to 5at lever

‘larms equal to the

reciprocals of the
piston areas (as if
the levers of in-
dividual acoustic
rods were rigidly

connected)
I = llA] = liAz
= ete.
U1 = Uz = etc.
P14+ P2 — P3s — P
—Pps = 0

USSEISTSSaY

e

5
Junction (soldered
wires of any
cross-sectional
area)
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Rectilineal Rotational . .
. . Acoustic Electric
mechanical mechanical
Simple junctions. The across variables are equal. The sum of the through variables

toward the junction is zero

1 3
2 4
5

Hydraulie junction,
having unit terminal

areas 1 to 5
F1 =F2 = ete.
v+ vy — V3 — 0,

-"1)5=0

1 3
2 4
5

Hydraulic junction;
(differential gear-
box 1:1)

Fm =Fnz = ete.

{vr1 + vr2 — Vg3

— Ups — Vg5 =0

1 3 |1 3
o™ 4 | 2 4
5 5

Hydraulic acoustic
junction of tubes
not necessarily of

equal areas

p1 = P2 = ete.

U,+U.,—-U;
-Us,-U; =0

Junction (soldered
wires of any cross-
sectional area)

E1=E2 = ete.
L+I,-1,-1,
-I;=0
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Rectilineal
mechanical

Rotational
mechanical

Acoustic

Electric

Meshers. The through variables (in the direction of the dotted arroW) are equal. The
sum of the across variables (with sign changed where through arrow points away from

junction) is zero

+ =
1 3

2 .J. 4
: 5
Hydraulic junction;
mesher (see below)
F, = F,; = etc.
vy + 02 — V3 — Uy
- Vs = 0
The earth connection
is not necessary when
equal numbers of
forces flow to and
Sfrom the mesher.

Typical hydraulic
junction structure
(see symbol above):

Equal-area pistons
with common liquid,
or any set of levers
which will ensure
equal forces of com-
pression

+-->

Hydraulic junction;
mesher (see below)
FR] = F)zz = ete.
Vp1 =+ Ur2 — Urs

— Vps —Ups = 0
The earth connection
is not necessary
when equal numbers
of torques flow to and
from the mesher.

Typical hydraulic
junction structure
(see symbol above):

Differential gear-
box giving equal
torques

Hydraulic acoustic
junction; mesher
p1 = p2 = ete.
U,+U. -U;

- U q4 = Us = 0
The acoustic earth
connection is not
necessary when equal
numbers of sound
pressures flow fo
and from the mesher.

| Typical hydraulic

junction structure
(see symbol above):

Acoustic rods, gener-
ally of different
wavefront (piston)
areas, entering a
small chamber con-
taining ideal fluid

Isocurrent junction;
mesher (see below)

I, = I, = ete.

E, +E, - E;

- E 4 = E5 = 0
The ground connec-
tion is not neces-
sary when equal num-
bers of currents
flow to and from
the mesher.
Typical mesher
structure (see
symbol above):

Similar ideal trans-
formers (on separate
cores) with second-
aries in series.
Phased as shown by
arrows
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Rectilineal
mechanical

Rotational
mechanical

Acoustic

Electric

Meshers. The through variables (as indicated by the arrows) are equal.

The sum of

the across variables (with sign changed where through variable arrow points away from

junction) is zero

Rigid junction;
mesher (see below)
v; = v, = ete.
F, +F, ~F, - F,
-F; =0
The sky connection is
not necessary when
equal numbers of ve-
‘locities flow. to and
Sfrom the mesher.

Typical rigid junc-
tion structure (see
symbol above):

A multiplicity of
rigidly connected
equal-area pistons
which ensure equal
fluid velocities in

all tubes; or a number
of rods bolted
together

Rigid (geared) junc-
tion; mesher
Vr1 = Vg2 = ete.
Fry + Fry — Fpy
—Fry — Frs =0
The sky connection
is not necessary
when equal numbers
of rotational veloc-
ities flow to and
Sfrom the mesher.
Typical rigid june-
tion structure (see
symbol above):

gearbox

Gears, belts, chains,
or levers, which
ensure equal rota-
tions of shafts

nection is not neces-
sary when equal
numbers of volume
velocities flow to
and from the mesher.
Typical rigid
acoustic junction
structure:

in the rectilineal
 column at the left,
but the pivoted
wheel drives pistons
1 to 5, not neces-
sarily of equal areas,
at lever arms equal
to the reciprocals

of theareas. Special
case, equal-area
pistons rigidly con-
nected ; or wave-
fronts in contact

Same as the device .

1 3
- .
2 __{: 4
=L ____’__5
Rigid acoustic june- | Isocurrent junction;
tion; mesher mesher
U1=U2=etc. Ix=12=etc-
P1 + P2 — ps — ps E1+E2—E3—E4_
— Ps = 0 - E5 =(
The acoustic sky con- | The ground connec-

tion is not necessary
when equal num-
bers of currents
flow to and from

the mesher.

Typical mesher
structure:

Same as on op-
posite page
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Rectilineal
mechanical

Rotational
mechanical

Acoustic

Electrie

—L—or -“l

Earth, velocity of
reference, frame of
reference

»=0
Force F is measured
relative to the
force in the sur-
rounding empty space
{no symbol)

‘-—._L—' J_?_ or —-lll
Earth, angular ve-
locity of reference,
frame of reference

ve =0
Torque Fr is meas-
ured relative to the
torque in the sur-
rounding empty
space (no symbol)

Acoustic earth, vol-
ume velocity of ref-
ence, frame of ref-
ence

U=0
Sound pressure p is
measured relative to
the pressure P, in
the surrounding at-
mosphere (no
symbol)

.

Ground, voltage of
reference

E=0 _
Current. I is
measured relative
to the current in
the surrounding
empty space
(no symbol)

Passive Elements

—AN—

F4

A mechanical
mobility 2.

_ bacross

" F through
# and F are complex
amplitudes.
z=r+jz
r = responsiveness

z = excitability

]

Mechanical immo-

bility
=1/z=9¢9 —i_-jb

g = unresponsiveness
= unexcitability

F =1y

o =Fz

P =F

P = F | cOS @:

=F*r

___V\/\__

2R
A rotational
mobility zg.

Dr 2CTOSS
Fr through
oz and Fg are com-
plex amplitudes.

2r = Tk +JTr

rg = rotational
responsiveness

&r = rotational
excitability

Rotational immo-
bility

Yr = 1/2r = gr +jbR
gr = rotational
unresponsiveness

bz = rotational

unexcitability
F r = DrRYR
‘0}3 = F RRR
P P = URF R

P = v)zl FR[ cOS @.r
= Fel*r

—AM—

%a
An acoustic
mobility z4.
" U across
p through
U and p are com-
plex amplitudes.
2a =74 + JTa
ra = acoustic ,

Za

responsiveness
T4 = acoustic

excitability
Acoustic immobility

Ya = 1/24 = ga +3ba
ga = acoustic
unréesponsiveness

b4 = acoustic

unexcitability
p = Oya
U = pZA
P, =Up
P = Ul| p| cos ¢:4
=pl’ra

__/\/V\/\—-

Z

An electric
impedance Z.

_ E across

I through -
E and I are complex
amplitudes.
Z =R +3jX

1R = resistance

X = reactance

Admittance

Y=1Z=G 4 jB

G = conductance

B = susceptance

I =EY

E=1z

P, = EI

P = E| I| cos ¢z
=I*R
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Rectilineal Rotational . .
mechanical mechanical Acoustic Electric
Referents
&I;/ or /_]\ \T/ or /i\ \—‘[7 or /L\ _]
Sky, Sky, Sky, Ground,

force of reference,
(a reservoir of ideal
fluid maintained at
constant pressure)

F=0
Velocity v is meas-
ured relative to the
surrounding tubing
or full space (no
symbol)

torque of reference,
(a reservoir of ideal
fluid maintained at
constant pressure)

F R = 0 )
Angular velocity vz
is measured relative
to the surrounding -
tubing or full space

pressure of reference,
(usually an atmos-
phere of fluid at con-
stant pressure Py)

—pr=0__
Volume velocity U is
measured relative to
the surrounding tub-
ing or full space

(no symbol)

(no symbol)

voltage of refer-
ence, (a source of
charge at constant
voltage)

E=0
Current [ is meas-
ured relative to
the current in the
surrounding empty
space (no symbol)

Passive Elements

—

—M—
Zy

A mechanical
impedance Z .

F across
Zy= ——
¢ through
Zy =Ry + jXu
Ry = mechanical
resist ance
X u = mechanical
reactance
Mechanical
admittance
Yu=1/Zy
= Gu + jBu
Gy = mechanical
conductance
By = mechanical
susceptance
b =FYy
P =0Zy
P s = Fv

P = F|v| cos ¢z
P =]?Ry

Zr = 9r through
Zr = Rp + jXz
R:r = rotational

resistance
Xz = rotational
reactance
Rotational
admittance
Yr=1/Zz
= Gr + jBzr
Gr = rotational
conductance
By = rotational
susceptance
ﬂk = F RYR
p R = f)RZ R
P, s = F rRUr
P = FRI 'URI COS @zr
P = URP RR

—r

Zg
A rotational
impedance Z5.
Fr across

———

—\NN—

Z4

An acoustic
impedance Z,.
7. = p-across
4~ U through
Zy =R, + JXa
R4 = acoustic.
resistance
X4 = acoustic
reactance

Acoustic admittance

YA = l/ZA
=G4 +jBa
G4 = acoustic
conductance
B4 = acoustic
susceptance
U = ﬁYA
ﬁ = UZA
P,' = pU
P = p| U| cos ¢z4
P =U]?R,

—AWW—

VA
An electric
impedance Z.
_ E across
I through
Z =R +j;X

R = resistance

X = reactance

Admittance
Y =1/Z =G 4+ ;B
G = conductance

B = susceptance

I-Ey 1
E =17 ‘
P, = EI

P = E| 1| cos ¢,

P =1IR



Three-terminal mo-
bility 2 including
(rigid) junction.

01=02=03=0
F;; =F1—F2
F2=0/2

—Af—

r

Mechanical responsor
of responsiveness r

Typical structure:
viscous oil between
plates attached to
the terminals

v across

9
"~ F through _ F
z=r -
v = Fr
0=Fr
P =F|*r =o|¥r
Displacement
s = [odt = TQn

where impulse
Qu = [Fdt

Three-terminal rota- |

tional mobility 2z
including (rigid)

Jjunction.

D1 = Opp = s = 0
Frs = Fry — Fr:
Fre = 0r/2r

Tr
Rotational responsor

of rotational respon-
siveness rz

Typical structure:
viscous oil between
concentric rotating
cones attached to
the terminals

_ vgpacross  fp
" Fgthrough Fg
2r = TR

Vr = Fn’l'n

Pp = F}ﬂ‘g

P = FRP T = vR|2/1‘n
Rotational dis-
placement

6 = f’l)gdt = TRQR
where torsional im-

pulse Qr = [frdt

Tr

Or |,

Three-terminal
acoustic mobility 24
including (rigid)

junction.
0,=0,=U0;=0
ps = Pr — D2

P2 = U/ZA

— A

Ta
Acoustic responsor
of acoustic respon-
siveness 7,4

[ 1

Typical structure:
viscous oil leaking
through holes in
piston in movable
cylinder

_Uacross U
= = —
p through  p
24 =Ta
U = pra
U = ﬁTA
P =pl*ra = Ul*/r4

Volume displace-

Iment

S = IU dt = TAQA
where acoustic im-
pulse Q4 = [pdt

3154 ACOUSTICS -
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Rectilin.eal Rotatio.n al Acoustic Electric
mechanical mechanical
o +o- + - wire
7T t0d . 3 | 1| shatt 3 | 1 | rod 3 | 1 2 3
R I 2»—va\' 5 V! z
earth " earth *earth = ground

Three-terminal
impedance Z includ-
ing junction.

E1=E2=.E3=E
Ia=f1‘—jz
I. =E/Z

R

| Resistor of resist-

ance R

AN

Typical structure:
a length of resistive
wire

R= E across E
I through ~ 7

Z =R

E =1IR

E -1IR

P =1I*R = E|*/)R

Voltage impulse

S = [Edt = RQ

where charge

Q = [Idt
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Rectllm'eal Rotatxo_na 1 Acoustic Eleetric
mechanical mechanical
tube tube wire
1 2 3|1 2 3 1 2 3
\ Zg Za Z
___.. sky == sky =~ sky == ground

Three-terminal me-
chanical impedance
Zy including
hydraulic junction.
F 1 = F 2 = F 3 = F
03 = 01 - 02

02 = F / Z M

—-——M—-—)—.
'S
Mechanieal resistor
of resistance Ry

VL L L L Ll d

AVATAD AL A AA
Typical structure:
a length of viscous
fluid moving in a
stationary tube of

unit cross-sectional
area

Ry = F across F
M~ p through 9

Zu = By

F = URM

F = Ry

P =v|?Ry = F|*/Ry

Impulse

QM = IF dt = RMS

where displacement
s = fodt

Three-terminal rota-
tional impedance Z5
including hydraulic
Jjunction. _
Fm. = Fg, = FR;=E£
Urs == URy — UR2

Ore = ﬁR/ZR

—W—

Re

‘Rotational resistor

of rotational resist-
ance R

r—

==

Acoustic resistor of

R4

Three-terminal
acoustic impedance
Z 4 including
hydraulic junction.

DPr=pP2=Ps =0
3 = 1_02
U, =p/Za
—AN—
R

acoustic resistance

>

Typiecal structure:
an annulus of viscous

“|liquid between a

rotating cone and a
stationary cone; or
a coil of tubing con-
taining viscous fluid

Fracross Frl|

e through 9,
Zr = R
Fr = URRR
Fr = 0zRe
P = vp|* Re = fr|*/Re
Torsional impulse

Qr = [Frpdt = Rzo
where displacement
0 = fl)n dt

‘where volume dis-

Typical structure:
a length of viscous
fluid moving in a
stationary tube of
any cross-sectional
area

P across

= p
Ra= U through U
ZA = RA
P = URA
p = UR.

P = U|*Ra = p|*/Ru4
Acoustic impulse

Qi = [pdt = RS,

placement S, = fU dt

Three-terminal
impedance Z ‘
including junction.

E[—'-‘-Ez =E3=E
I3=I1,—Iz
I,=E/Z

R

Resistor of resist-
ance R

—>—WV‘—->—

Typical structure:
a length of resis-

tive wire
Eacross E.
R = 22008 _ 2
I through [
Z =R
E =1IR
E =IR

P =I’R = E|R

Voltage impulse

S =fEdt = RQ
where charge
Q= [Idt
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Rectilineal Rotational A ti Electric
mechanical mechanical coustie ectric
. rod _ shaft -— rod wire
1. T3l 1 T3 |1 3 11 2 3
—F—’\/h—lll —)-——«/\/\-—-Il| ] ', R
2 T 2 TR 2 Ta — )
earth earth earth| ground
Three-terminal me- | Three-terminal rota- | Three-terminal Three-terminal re-

chanical responsor r
including junction.

VU =0 =03 =190

tional responsor 7z
including junction.

URy = Upe = Urs = Ur

F3=F1"F2 FR3=FR1"FR2
Py =o/r Fre = 0g/re
)

Cu (or Lu) Cr (or Ly)
Spring of compliance | Torsional spring of
Cy (or L) rotational com-

pliance Cx (or Lg)

v = CydF/dt vg = CrdFg/dt
z = wCM (or jwLy) |2r = joCr
9 = Or = Frer
W = CMF’/2 W = CrFg®/2
Displacement Angular displacement
s = fvdt = CuF 0 = fvrdt = CrFr

acoustic responsor 74
including (rigid)

Jjunction.
Uy=U=U; =U
P3s = P1 — P2
i = U/TA

Cy4 (or Ly)

Acoustic spring of
acoustic compliance

CA (OI' LA)

U = Cadp/dt

24 = ijA

U = ﬁZA

W = C.p?/2
Volume displacement
X =[Udt =Cap

A closed volume V of
gas at pressure P,
has C4 = V/vB,

sistor R including

| (soldered) junction.

E1=E2=E3=E
I;=Il"12
I, = E/R

— B

L
Inductor of induet-
ance L

E =Ldl/dt

Z = joL
E=1z

W = LI%*/2
Voltage impulse
S =[Edt=LI
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—

m
A mass, of mass m

Typical structure:
a length of massive
fluid contained in
a unit-area tube

F = mdv/dt = ma
Zy = Jorm

F =90Zy

W = mv?/2
Impulse equals
momentum

Qu = [Fdt = my

—__,'6/6\*—
J
A rotational inertor
of polar moment of

inertia J

-| Typical structure:

a coil of stationary
tubing containing a
massive fluid

Fa = J dvg/dt = Ja

Zz = jwJ
Fr = 02Zp
W = Jv32/2

Torsional impulse
equals angular mo-
mentum

Qr = fFudt = Jug

— ——

M
An acoustic inertor
of inertance M (or
M,. M =m/A?
Typical structure:
a mass m of gas in a
stationary tube or
neck of area A

p=MdU/dt = pA,
Z4 = joM

p =0Z,

W = MU?%/2

Acoustic impulse
equals acoustic mo-
mentum

Q4= [pdt = MU

Rectilineal Rotational Acousti Electri
mechanical mechanical coustic ectne
tube tube o wire
1 2 3 1 2 3
\S k. R
© sky = sky = ground
‘Three-'oerminal me- | Three-terminal rota- | Three-terminal Three-terminal
chanical resistor Rx |tional resistor Rz acoustic resistor R, [impedance Z in-
including hydraulic ~ |including hydraulic |including hydraulic |cluding (soldered)
junction. junction. ~ |junction. junction.
Fl =F2 =R3=F Fk1=ng=Fna=Fn p1=p2‘=p3=p E1=E2=E3=E
V3 = U — V2 Ups = Ury — Ur2 Qa=U1"U: I,=1,-1.
02 =-F/Ry 032 =FR2/RB _»Uz -_-p/RA Ig =E/R

L
An inductor of

inductance L

Typical structure:
a coil of wire

E=LdIja&
Z = joL

E =12

W = LI*/2

Voltage impulse

S = [Edt = LI
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Rectilineal Rotational Acoustic Electri
mechanical mechanical Acoustic ectric
. rod shaft A rod o wire
1. 3 |1 3 |1 "3 |1 "3
2 . Il '! 2 ) I. 2 ll
Cx earth Cr earth C. earth L ground

Three-terminal spring
(elastor) of compli-
ance Cy, including
junction.

N =V =03 =19

F; =F1 '-Fg
Fz = 0/]0.)0”
il
m

A mass of mass m

One terminal per-
manently earthed.
Typical structure:
a solid block con-
strained to